def apply(self, x, y, is_training):
    """Apply the discriminator on a input.

    Args:
      x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: Boolean, whether the architecture should be constructed for
        training or inference.

    Returns:
      Tuple of 3 Tensors, the final prediction of the discriminator, the logits
      before the final output activation function and logits form the second
      last layer.
    """
    use_sn = self._spectral_norm
    batch_size = x.shape.as_list()[0]
    # Resulting shape: [bs, h/2, w/2, 64].
    net = lrelu(conv2d(x, 64, 4, 4, 2, 2, name="d_conv1", use_sn=use_sn))
    # Resulting shape: [bs, h/4, w/4, 128].
    net = conv2d(net, 128, 4, 4, 2, 2, name="d_conv2", use_sn=use_sn)
    net = self.batch_norm(net, y=y, is_training=is_training, name="d_bn2")
    net = lrelu(net)
    # Resulting shape: [bs, h * w * 8].
    net = tf.reshape(net, [batch_size, -1])
    # Resulting shape: [bs, 1024].
    net = linear(net, 1024, scope="d_fc3", use_sn=use_sn)
    net = self.batch_norm(net, y=y, is_training=is_training, name="d_bn3")
    net = lrelu(net)
    # Resulting shape: [bs, 1].
    out_logit = linear(net, 1, scope="d_fc4", use_sn=use_sn)
    out = tf.nn.sigmoid(out_logit)
    return out, out_logit, net
    def _get_conv(self,
                  inputs,
                  in_channels,
                  out_channels,
                  scale,
                  suffix,
                  kernel_size=(3, 3),
                  strides=(1, 1)):
        """Performs a convolution in the ResNet block."""
        if inputs.get_shape().as_list()[-1] != in_channels:
            raise ValueError("Unexpected number of input channels.")
        if scale not in ["up", "down", "none"]:
            raise ValueError(
                "Scale: got {}, expected 'up', 'down', or 'none'.".format(
                    scale))

        outputs = inputs
        if scale == "up":
            outputs = unpool(outputs)
        outputs = ops.conv2d(outputs,
                             output_dim=out_channels,
                             k_h=kernel_size[0],
                             k_w=kernel_size[1],
                             d_h=strides[0],
                             d_w=strides[1],
                             use_sn=self._spectral_norm,
                             name="{}_{}".format(
                                 "same" if scale == "none" else scale, suffix))
        if scale == "down":
            outputs = tf.nn.pool(outputs, [2, 2],
                                 "AVG",
                                 "SAME",
                                 strides=[2, 2],
                                 name="pool_%s" % suffix)
        return outputs
Exemplo n.º 3
0
  def apply(self, x):
    """Overwriting compare_gan's apply as we only need `x`."""
    if not isinstance(x, tuple) or len(x) != 2:
      raise ValueError("Expected 2-tuple, got {}".format(x))
    x, latent = x
    x_shape = tf.shape(x)

    # Upscale and fuse latent.
    latent = arch_ops.conv2d(latent, 12, 3, 3, 1, 1,
                             name="latent", use_sn=self._spectral_norm)
    latent = arch_ops.lrelu(latent, leak=0.2)
    latent = tf.image.resize(latent, [x_shape[1], x_shape[2]],
                             tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    x = tf.concat([x, latent], axis=-1)

    # The discriminator:
    k = 4
    net = arch_ops.conv2d(x, self._num_filters_base, k, k, 2, 2,
                          name="d_conv_head", use_sn=self._spectral_norm)
    net = arch_ops.lrelu(net, leak=0.2)

    num_filters = self._num_filters_base
    for i in range(self._num_layers - 1):
      num_filters = min(num_filters * 2, 512)
      net = arch_ops.conv2d(net, num_filters, k, k, 2, 2,
                            name=f"d_conv_{i}", use_sn=self._spectral_norm)
      net = arch_ops.lrelu(net, leak=0.2)

    num_filters = min(num_filters * 2, 512)
    net = arch_ops.conv2d(net, num_filters, k, k, 1, 1,
                          name="d_conv_a", use_sn=self._spectral_norm)
    net = arch_ops.lrelu(net, leak=0.2)

    # Final 1x1 conv that maps to 1 Channel
    net = arch_ops.conv2d(net, 1, k, k, 1, 1,
                          name="d_conv_b", use_sn=self._spectral_norm)

    out_logits = tf.reshape(net, [-1, 1])  # Reshape all into batch dimension.
    out = tf.nn.sigmoid(out_logits)

    return DiscOutAll(out, out_logits)
Exemplo n.º 4
0
  def apply(self, z, y, is_training):
    """Build the generator network for the given inputs.

    Args:
      z: `Tensor` of shape [batch_size, z_dim] with latent code.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: boolean, are we in train or eval model.

    Returns:
      A tensor of size [batch_size] + self._image_shape with values in [0, 1].
    """
    # Each block upscales by a factor of 2.
    seed_size = 4
    image_size = self._image_shape[0]

    # Map noise to the actual seed.
    net = ops.linear(
        z,
        self._ch * self._channels[0] * seed_size * seed_size,
        scope="fc_noise")
    # Reshape the seed to be a rank-4 Tensor.
    net = tf.reshape(
        net,
        [-1, seed_size, seed_size, self._ch * self._channels[0]],
        name="fc_reshaped")

    up_layers = np.log2(float(image_size) / seed_size)
    if not up_layers.is_integer():
      raise ValueError("log2({}/{}) must be an integer.".format(
          image_size, seed_size))
    if up_layers < 0 or up_layers > 5:
      raise ValueError("Invalid image_size {}.".format(image_size))
    up_layers = int(up_layers)

    for block_idx in range(5):
      block = self._resnet_block(
          name="B{}".format(block_idx + 1),
          in_channels=self._ch * self._channels[block_idx],
          out_channels=self._ch * self._channels[block_idx + 1],
          scale="up" if block_idx < up_layers else "none")
      net = block(net, z=z, y=y, is_training=is_training)

    net = self.batch_norm(
        net, z=z, y=y, is_training=is_training, name="final_norm")
    net = tf.nn.relu(net)
    net = ops.conv2d(net, output_dim=self._image_shape[2],
                     k_h=3, k_w=3, d_h=1, d_w=1, name="final_conv")
    net = tf.nn.sigmoid(net)
    return net
Exemplo n.º 5
0
  def apply(self, x, y, is_training):
    """Apply the discriminator on a input.

    Args:
      x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: Boolean, whether the architecture should be constructed for
        training or inference.

    Returns:
      Tuple of 3 Tensors, the final prediction of the discriminator, the logits
      before the final output activation function and logits form the second
      last layer.
    """
    resnet_ops.validate_image_inputs(x)
    colors = x.get_shape().as_list()[-1]
    assert colors in [1, 3]
    ch = 64
    output = ops.conv2d(
        x, output_dim=ch // 4, k_h=3, k_w=3, d_h=1, d_w=1,
        name="color_conv")
    in_channels = ch // 4
    out_channels = ch // 2
    for superblock in range(6):
      for i in range(5):
        block = self._resnet_block(
            name="B_{}_{}".format(superblock, i),
            in_channels=in_channels,
            out_channels=in_channels,
            scale="none")
        output = block(output, z=None, y=y, is_training=is_training)
      # We want to downscale 5 times.
      if superblock < 5:
        block = self._resnet_block(
            name="B_{}_up".format(superblock),
            in_channels=in_channels,
            out_channels=out_channels,
            scale="down")
        output = block(output, z=None, y=y, is_training=is_training)
      in_channels *= 2
      out_channels *= 2

    # Final part
    output = tf.reshape(output, [-1, 4 * 4 * 8 * ch])
    out_logit = ops.linear(output, 1, scope="disc_final_fc",
                           use_sn=self._spectral_norm)
    out = tf.nn.sigmoid(out_logit)
    return out, out_logit, output
Exemplo n.º 6
0
  def apply(self, z, y, is_training):
    """Build the generator network for the given inputs.

    Args:
      z: `Tensor` of shape [batch_size, z_dim] with latent code.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: boolean, are we in train or eval model.

    Returns:
      A tensor of size [batch_size] + self._image_shape with values in [0, 1].
    """
    z_shape = z.get_shape().as_list()
    if len(z_shape) != 2:
      raise ValueError("Expected shape [batch_size, z_dim], got %s." % z_shape)
    ch = 64
    colors = self._image_shape[2]
    # Map noise to the actual seed.
    output = ops.linear(z, 4 * 4 * 8 * ch, scope="fc_noise")
    # Reshape the seed to be a rank-4 Tensor.
    output = tf.reshape(output, [-1, 4, 4, 8 * ch], name="fc_reshaped")
    in_channels = 8 * ch
    out_channels = 4 * ch
    for superblock in range(6):
      for i in range(5):
        block = self._resnet_block(
            name="B_{}_{}".format(superblock, i),
            in_channels=in_channels,
            out_channels=in_channels,
            scale="none")
        output = block(output, z=z, y=y, is_training=is_training)
      # We want to upscale 5 times.
      if superblock < 5:
        block = self._resnet_block(
            name="B_{}_up".format(superblock),
            in_channels=in_channels,
            out_channels=out_channels,
            scale="up")
        output = block(output, z=z, y=y, is_training=is_training)
      in_channels /= 2
      out_channels /= 2

    output = ops.conv2d(
        output, output_dim=colors, k_h=3, k_w=3, d_h=1, d_w=1,
        name="final_conv")
    output = tf.nn.sigmoid(output)
    return output
    def apply(self, z, y, is_training):
        """Build the generator network for the given inputs.

    Args:
      z: `Tensor` of shape [batch_size, z_dim] with latent code.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: boolean, are we in train or eval model.

    Returns:
      A tensor of size [batch_size, 32, 32, colors] with values in [0, 1].
    """
        ch = 64
        colors = self._image_shape[2]
        batch_size = z.get_shape().as_list()[0]
        magic = [(8, 4), (4, 2), (2, 1)]
        output = ops.linear(z, 6 * 6 * 512, scope="fc_noise")
        output = tf.reshape(output, [batch_size, 6, 6, 512],
                            name="fc_reshaped")
        for block_idx in range(3):
            block = self._resnet_block(name="B{}".format(block_idx + 1),
                                       in_channels=ch * magic[block_idx][0],
                                       out_channels=ch * magic[block_idx][1],
                                       scale="up")
            output = block(output, z=z, y=y, is_training=is_training)
        output = self.batch_norm(output,
                                 z=z,
                                 y=y,
                                 is_training=is_training,
                                 scope="final_norm")
        output = tf.nn.relu(output)
        output = ops.conv2d(output,
                            output_dim=colors,
                            k_h=3,
                            k_w=3,
                            d_h=1,
                            d_w=1,
                            name="final_conv")
        return tf.nn.sigmoid(output)
    def apply(self, x, y, is_training):
        """Apply the discriminator on a input.

    Args:
      x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: Boolean, whether the architecture should be constructed for
        training or inference.

    Returns:
      Tuple of 3 Tensors, the final prediction of the discriminator, the logits
      before the final output activation function and logits form the second
      last layer.
    """
        del is_training, y
        use_sn = self._spectral_norm
        # In compare gan framework, the image preprocess normalize image pixel to
        # range [0, 1], while author used [-1, 1]. Apply this trick to input image
        # instead of changing our preprocessing function.
        x = x * 2.0 - 1.0
        net = conv2d(x, 64, 3, 3, 1, 1, name="d_conv1", use_sn=use_sn)
        net = lrelu(net, leak=0.1)
        net = conv2d(net, 128, 4, 4, 2, 2, name="d_conv2", use_sn=use_sn)
        net = lrelu(net, leak=0.1)
        net = conv2d(net, 128, 3, 3, 1, 1, name="d_conv3", use_sn=use_sn)
        net = lrelu(net, leak=0.1)
        net = conv2d(net, 256, 4, 4, 2, 2, name="d_conv4", use_sn=use_sn)
        net = lrelu(net, leak=0.1)
        net = conv2d(net, 256, 3, 3, 1, 1, name="d_conv5", use_sn=use_sn)
        net = lrelu(net, leak=0.1)
        net = conv2d(net, 512, 4, 4, 2, 2, name="d_conv6", use_sn=use_sn)
        net = lrelu(net, leak=0.1)
        net = conv2d(net, 512, 3, 3, 1, 1, name="d_conv7", use_sn=use_sn)
        net = lrelu(net, leak=0.1)
        batch_size = x.shape.as_list()[0]
        net = tf.reshape(net, [batch_size, -1])
        out_logit = linear(net, 1, scope="d_fc1", use_sn=use_sn)
        out = tf.nn.sigmoid(out_logit)
        return out, out_logit, net
Exemplo n.º 9
0
    def apply(self, z, y, is_training):
        """Build the generator network for the given inputs.

    Args:
      z: `Tensor` of shape [batch_size, z_dim] with latent code.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: boolean, are we in train or eval model.

    Returns:
      A tensor of size [batch_size, 28, 28, colors] with values in [0, 1].
    """
        assert self._image_shape[0] == 28
        assert self._image_shape[1] == 28
        num_blocks = 2  # update network to generate 28x28 noise
        z_dim = z.shape[1].value

        if self._embed_z:
            z = ops.linear(z,
                           z_dim,
                           scope="embed_z",
                           use_sn=self._spectral_norm)
        if self._embed_y:
            y = ops.linear(y,
                           z_dim,
                           scope="embed_y",
                           use_sn=self._spectral_norm)
        y_per_block = num_blocks * [y]
        if self._hierarchical_z:
            z_per_block = tf.split(z, num_blocks + 1, axis=1)
            z0, z_per_block = z_per_block[0], z_per_block[1:]
            if y is not None:
                y_per_block = [tf.concat([zi, y], 1) for zi in z_per_block]
        else:
            z0 = z
            z_per_block = num_blocks * [z]

        init_channels = 256
        output = ops.linear(z0,
                            7 * 7 * init_channels,
                            scope="fc_noise",
                            use_sn=self._spectral_norm)
        output = tf.reshape(output, [-1, 7, 7, init_channels],
                            name="fc_reshaped")
        for block_idx in range(num_blocks):
            block = self._resnet_block(name="B{}".format(block_idx + 1),
                                       in_channels=init_channels,
                                       out_channels=init_channels,
                                       scale="up")
            output = block(output,
                           z=z_per_block[block_idx],
                           y=y_per_block[block_idx],
                           is_training=is_training)

        # Final processing of the output.
        output = self.batch_norm(output,
                                 z=z,
                                 y=y,
                                 is_training=is_training,
                                 name="final_norm")
        output = tf.nn.relu(output)
        output = ops.conv2d(
            output,
            output_dim=self._image_shape[2],
            k_h=3,
            k_w=3,
            d_h=1,
            d_w=1,
            name="final_conv",
            use_sn=self._spectral_norm,
        )

        if self._wavelet_deconv:  # Add WaveletDeconv layer
            output = ops.waveletDeconv(output)
        # End WaveletDeconv layer

        return tf.nn.sigmoid(output)
  def apply(self, z, y, is_training):
    """Build the generator network for the given inputs.

    Args:
      z: `Tensor` of shape [batch_size, z_dim] with latent code.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: boolean, are we in train or eval model.

    Returns:
      A tensor of size [batch_size] + self._image_shape with values in [0, 1].
    """
    shape_or_none = lambda t: None if t is None else t.shape
    logging.info("[Generator] inputs are z=%s, y=%s", z.shape, shape_or_none(y))
    # Each block upscales by a factor of 2.
    seed_size = 4
    z_dim = z.shape[1].value

    in_channels, out_channels = self._get_in_out_channels()
    num_blocks = len(in_channels)

    if self._embed_z:
      z = ops.linear(z, z_dim, scope="embed_z", use_sn=False,
                     use_bias=self._embed_bias)
    if self._embed_y:
      y = ops.linear(y, self._embed_y_dim, scope="embed_y", use_sn=False,
                     use_bias=self._embed_bias)
    y_per_block = num_blocks * [y]
    if self._hierarchical_z:
      z_per_block = tf.split(z, num_blocks + 1, axis=1)
      z0, z_per_block = z_per_block[0], z_per_block[1:]
      if y is not None:
        y_per_block = [tf.concat([zi, y], 1) for zi in z_per_block]
    else:
      z0 = z
      z_per_block = num_blocks * [z]

    logging.info("[Generator] z0=%s, z_per_block=%s, y_per_block=%s",
                 z0.shape, [str(shape_or_none(t)) for t in z_per_block],
                 [str(shape_or_none(t)) for t in y_per_block])

    # Map noise to the actual seed.
    net = ops.linear(
        z0,
        in_channels[0] * seed_size * seed_size,
        scope="fc_noise",
        use_sn=self._spectral_norm)
    # Reshape the seed to be a rank-4 Tensor.
    net = tf.reshape(
        net,
        [-1, seed_size, seed_size, in_channels[0]],
        name="fc_reshaped")

    for block_idx in range(num_blocks):
      name = "B{}".format(block_idx + 1)
      block = self._resnet_block(
          name=name,
          in_channels=in_channels[block_idx],
          out_channels=out_channels[block_idx],
          scale="up")
      net = block(
          net,
          z=z_per_block[block_idx],
          y=y_per_block[block_idx],
          is_training=is_training)
      if name in self._blocks_with_attention:
        logging.info("[Generator] Applying non-local block to %s", net.shape)
        net = ops.non_local_block(net, "non_local_block",
                                  use_sn=self._spectral_norm)
    # Final processing of the net.
    # Use unconditional batch norm.
    logging.info("[Generator] before final processing: %s", net.shape)
    net = ops.batch_norm(net, is_training=is_training, name="final_norm")
    net = tf.nn.relu(net)
    net = ops.conv2d(net, output_dim=self._image_shape[2], k_h=3, k_w=3,
                     d_h=1, d_w=1, name="final_conv",
                     use_sn=self._spectral_norm)
    logging.info("[Generator] after final processing: %s", net.shape)
    net = (tf.nn.tanh(net) + 1.0) / 2.0
    return net
    def apply(self, x, y, is_training):
        """Apply the discriminator on a input.

    Args:
      x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: Boolean, whether the architecture should be constructed for
        training or inference.

    Returns:
      Tuple of 3 Tensors, the final prediction of the discriminator, the logits
      before the final output activation function and logits form the second
      last layer.
    """
        bs = x.shape[0].value
        df_dim = 64  # Dimension of filters in the first convolutional layer.
        net = lrelu(
            conv2d(x,
                   df_dim,
                   5,
                   5,
                   2,
                   2,
                   name="d_conv1",
                   use_sn=self._spectral_norm))
        net = conv2d(net,
                     df_dim * 2,
                     5,
                     5,
                     2,
                     2,
                     name="d_conv2",
                     use_sn=self._spectral_norm)

        net = self.batch_norm(net, y=y, is_training=is_training, name="d_bn1")
        net = lrelu(net)
        net = conv2d(net,
                     df_dim * 4,
                     5,
                     5,
                     2,
                     2,
                     name="d_conv3",
                     use_sn=self._spectral_norm)

        net = self.batch_norm(net, y=y, is_training=is_training, name="d_bn2")
        net = lrelu(net)
        net = conv2d(net,
                     df_dim * 8,
                     5,
                     5,
                     2,
                     2,
                     name="d_conv4",
                     use_sn=self._spectral_norm)

        net = self.batch_norm(net, y=y, is_training=is_training, name="d_bn3")
        net = lrelu(net)
        out_logit = linear(tf.reshape(net, [bs, -1]),
                           1,
                           scope="d_fc4",
                           use_sn=self._spectral_norm)
        out = tf.nn.sigmoid(out_logit)
        return out, out_logit, net
Exemplo n.º 12
0
    def apply(self, x, y, is_training):
        """Apply the discriminator on a input.

    Args:
      x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: Boolean, whether the architecture should be constructed for
        training or inference.

    Returns:
      Tuple of 3 Tensors, the final prediction of the discriminator, the logits
      before the final output activation function and logits form the second
      last layer.
    """
        logging.info("[Discriminator] inputs are x=%s, y=%s", x.shape,
                     None if y is None else y.shape)
        resnet_ops.validate_image_inputs(x)

        in_channels, out_channels = self._get_in_out_channels(
            colors=x.shape[-1].value, resolution=x.shape[1].value)
        num_blocks = len(in_channels)

        net = ops.conv2d(x,
                         output_dim=in_channels[0],
                         k_h=3,
                         k_w=3,
                         d_h=1,
                         d_w=1,
                         name="initial_conv",
                         use_sn=self._spectral_norm)

        for block_idx in range(num_blocks):
            scale = "down" if block_idx % 2 == 0 else "none"
            block = self._resnet_block(name="B{}".format(block_idx + 1),
                                       in_channels=in_channels[block_idx],
                                       out_channels=out_channels[block_idx],
                                       scale=scale)
            net = block(net, z=None, y=y, is_training=is_training)
            # At resolution 64x64 there is a self-attention block.
            if scale == "none" and net.shape[1].value == 64:
                logging.info("[Discriminator] Applying non-local block to %s",
                             net.shape)
                net = ops.non_local_block(net,
                                          "non_local_block",
                                          use_sn=self._spectral_norm)

        # Final part
        logging.info("[Discriminator] before final processing: %s", net.shape)
        net = tf.nn.relu(net)
        h = tf.math.reduce_sum(net, axis=[1, 2])
        out_logit = ops.linear(h,
                               1,
                               scope="final_fc",
                               use_sn=self._spectral_norm)
        logging.info("[Discriminator] after final processing: %s", net.shape)
        if self._project_y:
            if y is None:
                raise ValueError(
                    "You must provide class information y to project.")
            with tf.variable_scope("embedding_fc"):
                y_embedding_dim = out_channels[-1]
                # We do not use ops.linear() below since it does not have an option to
                # override the initializer.
                kernel = tf.get_variable(
                    "kernel", [y.shape[1], y_embedding_dim],
                    tf.float32,
                    initializer=tf.initializers.glorot_normal())
                if self._spectral_norm:
                    kernel = ops.spectral_norm(kernel)
                embedded_y = tf.matmul(y, kernel)
                logging.info("[Discriminator] embedded_y for projection: %s",
                             embedded_y.shape)
                out_logit += tf.reduce_sum(embedded_y * h,
                                           axis=1,
                                           keepdims=True)
        out = tf.nn.sigmoid(out_logit)
        return out, out_logit, h
Exemplo n.º 13
0
    def apply(self, z, y, is_training):
        """Build the generator network for the given inputs.

    Args:
      z: `Tensor` of shape [batch_size, z_dim] with latent code.
      y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
        labels.
      is_training: boolean, are we in train or eval model.

    Returns:
      A tensor of size [batch_size] + self._image_shape with values in [0, 1].
    """
        shape_or_none = lambda t: None if t is None else t.shape
        logging.info("[Generator] inputs are z=%s, y=%s", z.shape,
                     shape_or_none(y))
        seed_size = 4

        if self._embed_y:
            y = ops.linear(y,
                           self._embed_y_dim,
                           scope="embed_y",
                           use_sn=False,
                           use_bias=False)
        if y is not None:
            y = tf.concat([z, y], axis=1)
            z = y

        in_channels, out_channels = self._get_in_out_channels()
        num_blocks = len(in_channels)

        # Map noise to the actual seed.
        net = ops.linear(z,
                         in_channels[0] * seed_size * seed_size,
                         scope="fc_noise",
                         use_sn=self._spectral_norm)
        # Reshape the seed to be a rank-4 Tensor.
        net = tf.reshape(net, [-1, seed_size, seed_size, in_channels[0]],
                         name="fc_reshaped")

        for block_idx in range(num_blocks):
            scale = "none" if block_idx % 2 == 0 else "up"
            block = self._resnet_block(name="B{}".format(block_idx + 1),
                                       in_channels=in_channels[block_idx],
                                       out_channels=out_channels[block_idx],
                                       scale=scale)
            net = block(net, z=z, y=y, is_training=is_training)
            # At resolution 64x64 there is a self-attention block.
            if scale == "up" and net.shape[1].value == 64:
                logging.info("[Generator] Applying non-local block to %s",
                             net.shape)
                net = ops.non_local_block(net,
                                          "non_local_block",
                                          use_sn=self._spectral_norm)
        # Final processing of the net.
        # Use unconditional batch norm.
        logging.info("[Generator] before final processing: %s", net.shape)
        net = ops.batch_norm(net, is_training=is_training, name="final_norm")
        net = tf.nn.relu(net)
        colors = self._image_shape[2]
        if self._experimental_fast_conv_to_rgb:

            net = ops.conv2d(net,
                             output_dim=128,
                             k_h=3,
                             k_w=3,
                             d_h=1,
                             d_w=1,
                             name="final_conv",
                             use_sn=self._spectral_norm)
            net = net[:, :, :, :colors]
        else:
            net = ops.conv2d(net,
                             output_dim=colors,
                             k_h=3,
                             k_w=3,
                             d_h=1,
                             d_w=1,
                             name="final_conv",
                             use_sn=self._spectral_norm)
        logging.info("[Generator] after final processing: %s", net.shape)
        net = (tf.nn.tanh(net) + 1.0) / 2.0
        return net