Exemplo n.º 1
0
def test_map_data_ranges():

    map_data_table = compare_survey_footprints.load_map_data(TEST_MAP_PATH)

    for column in map_data_table.columns:
        map_data = map_data = getattr(map_data_table, column.name)
        print(column.name, map_data.min(), map_data.max())
Exemplo n.º 2
0
def test_NObsPriority():

    runName = os.path.split(TEST_DB_PATH)[-1].replace('.db', '')
    opsim_db = maf.OpsimDatabase(TEST_DB_PATH)

    map_data_table = compare_survey_footprints.load_map_data(TEST_MAP_PATH)
    #print(map_data_table.columns)
    mapName = 'combined_map'
    tau_obs = 20.0

    log = open('./results/test_data.log', 'w')

    nLoop = 10
    for i in range(0, nLoop, 1):
        log.write('mapName: ' + mapName + '\n')
        log.write('runName: ' + runName + '\n')
        log.write('tau_obs: ' + str(tau_obs) + '\n')

        FoM = compare_survey_footprints.FiguresOfMerit()

        bundleDict = compare_survey_footprints.calcNVisits(
            opsim_db, runName, mapName)

        rootName = 'GalplaneFootprintMetric_' + mapName + '_'
        #outputName = rootName+'NObsPriority'
        outputName = rootName + 'Tau_' + str(tau_obs).replace('.', '_')
        log.write('OutputName: ' + outputName + '\n')

        metricData = bundleDict[outputName].metricValues
        log.write('metricData: ' + repr(metricData) + '\n')

        rubin_visibility_zone = compare_survey_footprints.calc_rubin_visibility(
            bundleDict, runName)
        log.write('rubin_visibility_zone: ' + repr(rubin_visibility_zone) +
                  '\n')

        map_data = getattr(map_data_table, mapName)
        log.write('map_data: ' + repr(map_data) + '\n')

        desired_healpix = compare_survey_footprints.calc_desired_survey_map(
            mapName, map_data, rubin_visibility_zone)

        log.write('N survey pixels: ' + str(len(desired_healpix)) + '\n')
        #log.write('Desired survey pixels: '+repr(desired_healpix)+'\n')

        FoM = compare_survey_footprints.calcFootprintOverlap(
            runName, mapName, tau_obs, desired_healpix, bundleDict, FoM)

        log.write('Overlap pixels: ' + str(FoM.overlap_healpix) + '\n')
        log.write('Overlap percent: ' + str(FoM.overlap_percent) + '\n')
        log.write('Missing pixels: ' + str(FoM.missing_healpix) + '\n')
        log.write('Missing percent: ' + str(FoM.missing_percent) + '\n')

        idx = np.argwhere(np.isnan(metricData))
        log.write('NaN values: ' + repr(idx) + '\n')
        log.write('metricData entries: ' + repr(metricData[idx]) + '\n')
        log.write('Metric sum values: ' + repr(metricData.sum()) + '\n')
        log.write('-------------------------------------------\n')

    log.close()
def time_per_filter():

    params = get_args()

    # Load the current OpSim database
    runName = os.path.split(params['opSim_db_file'])[-1].replace('.db', '')
    opsim_db = maf.OpsimDatabase(params['opSim_db_file'])

    # Load the Galactic Plane Survey footprint map data
    map_data_table = compare_survey_footprints.load_map_data(
        params['map_file_path'])
    print('Total number of pixels in map: ' + str(len(map_data_table)))

    # Start logfile
    logfile = open(
        os.path.join(output_dir, runName + '_time_per_filter_metric_data.txt'),
        'w')
    logfile.write(
        'runName   mapName  filter   mean(fexpt_ratio)  stddev(fexpt_ratio)  npix_obs  %desired_pixels\n'
    )

    # Loop over all science maps:
    for mapName in SCIENCE_MAPS:
        map_data = getattr(map_data_table, mapName)

        # Compute metrics
        bundleDict = calc_filter_metric(opsim_db, runName, mapName)
        print(bundleDict.keys())

        # Calculate the Rubin visibility zone:
        rubin_visibility_zone = compare_survey_footprints.calc_rubin_visibility(
            bundleDict, runName)

        # Determine the HEALpix index of the desired science survey region,
        # taking the Rubin visbility zone into account:
        desired_healpix = compare_survey_footprints.calc_desired_survey_map(
            mapName, map_data, rubin_visibility_zone)

        eval_filters_by_region(params, bundleDict, runName, mapName, map_data,
                               desired_healpix)

    logfile.close()
def eval_nobs_priority_function():

    params = get_args()

    # Load the current OpSim database
    runName = os.path.split(params['opSim_db_file'])[-1].replace('.db', '')
    opsim_db = maf.OpsimDatabase(params['opSim_db_file'])

    # Load the Galactic Plane Survey footprint map data
    map_data_table = compare_survey_footprints.load_map_data(
        params['map_file_path'])
    mapName = 'combined_map'
    map_data = getattr(map_data_table, mapName)

    # Compute metric data:
    bundleDict = calcMetrics(opsim_db, runName, mapName)

    # Plot the number of visits per HEALpixel as a function of space and
    # scientific priority:
    plot_3d_healpix_nvis_priority(runName, bundleDict, map_data)
def test_metric_calculation():

    runName = os.path.split(TEST_DB_PATH)[-1].replace('.db', '')
    opsim_db = maf.OpsimDatabase(TEST_DB_PATH)

    map_data_table = compare_survey_footprints.load_map_data(TEST_MAP_PATH)
    #print(map_data_table.columns)
    mapName = 'combined_map'
    tau_obs = 11.0
    tau_var = tau_obs * 5.0

    log = open('./cadence_results/test_data.log', 'w')

    nLoop = 10
    for i in range(0, nLoop, 1):
        log.write('mapName: ' + mapName + '\n')
        log.write('runName: ' + runName + '\n')
        log.write('tau_obs: ' + str(tau_obs) + '\n')

        FoM = eval_survey_cadence.TimeFiguresOfMerit()

        bundleDict = eval_survey_cadence.calc_cadence_metrics(
            opsim_db, runName, mapName)

        outputName1 = 'GalPlaneVisitIntervalsTimescales_' + mapName + '_Tau_' + str(
            tau_obs).replace('.', '_')
        outputName2 = 'GalPlaneSeasonGapsTimescales_' + mapName + '_Tau_' + str(
            tau_var).replace('.', '_')

        metric1_data = bundleDict[outputName1].metricValues
        metric2_data = bundleDict[outputName2].metricValues

        np.savetxt(
            os.path.join('./cadence_results/',
                         outputName1 + '_run' + str(i) + '.txt'), metric1_data)
        np.savetxt(
            os.path.join('./cadence_results/',
                         outputName2 + '_run' + str(i) + '.txt'), metric2_data)

        log.write('OutputName: ' + outputName1 + '\n')
        log.write('OutputName: ' + outputName2 + '\n')

        log.write('metricData 1: ' + repr(metric1_data) + '\n')
        log.write('metricData 2: ' + repr(metric2_data) + '\n')

        rubin_visibility_zone = compare_survey_footprints.calc_rubin_visibility(
            bundleDict, runName)
        log.write('rubin_visibility_zone: ' + repr(rubin_visibility_zone) +
                  '\n')
        log.write('Npix rubin_visibility_zone: ' +
                  str(len(rubin_visibility_zone)) + '\n')

        map_data = getattr(map_data_table, mapName)
        log.write('map_data: ' + repr(map_data) + '\n')
        log.write('Npix map_data: ' + str(len(map_data)) + '\n')

        desired_healpix = compare_survey_footprints.calc_desired_survey_map(
            mapName, map_data, rubin_visibility_zone)

        log.write('N survey pixels: ' + str(len(desired_healpix)) + '\n')
        log.write('Desired survey pixels: ' + repr(desired_healpix[0:10]) +
                  '\n')

        FoM = eval_survey_cadence.eval_metrics_by_region(bundleDict,
                                                         map_data,
                                                         runName,
                                                         mapName,
                                                         tau_obs,
                                                         rubin_visibility_zone,
                                                         desired_healpix,
                                                         datalog=log)

        log.write('VIM: ' + str(FoM.sumVIM) + '\n')
        log.write('Percent VIM: ' + str(FoM.percent_sumVIM) + '\n')
        log.write('SVGM: ' + str(FoM.sumSVGM) + '\n')
        log.write('Percent SVGM: ' + str(FoM.percent_sumSVGM) + '\n')
        log.write('VIP: ' + str(FoM.sumVIP) + '\n')
        log.write('Percent VIP: ' + str(FoM.percent_sumVIP) + '\n')

        idx = np.argwhere(np.isnan(metric1_data))
        log.write('NaN values metric 1: ' + repr(idx) + '\n')
        log.write('metricData entries: ' + repr(metric1_data[idx]) + '\n')
        log.write('Metric sum values: ' + repr(metric1_data.sum()) + '\n')
        log.write('-------------------------------------------\n')

    log.close()