Exemplo n.º 1
0
    def RunScript(self, robot, visual_mesh, collision_mesh, tcf_plane):
        if robot and robot.client and robot.client.is_connected and visual_mesh:
            if not collision_mesh:
                collision_mesh = visual_mesh

            c_visual_mesh = RhinoMesh.from_geometry(visual_mesh).to_compas()
            c_collision_mesh = RhinoMesh.from_geometry(collision_mesh).to_compas()

            if not tcf_plane:
                frame = Frame.worldXY()
            else:
                frame = plane_to_compas_frame(tcf_plane)
            tool = Tool(c_visual_mesh, frame, c_collision_mesh)

            scene = PlanningScene(robot)
            robot.attach_tool(tool)
            scene.add_attached_tool()

        return robot
import os
import time

from compas_fab.backends import RosClient
from compas_fab.robots import PlanningScene
from compas_fab.robots import Tool

HERE = os.path.dirname(__file__)
DATA = os.path.abspath(os.path.join(HERE, "..", "data"))
tool = Tool.from_json(os.path.join(DATA, "vacuum_gripper.json"))

with RosClient('localhost') as client:
    robot = client.load_robot()
    scene = PlanningScene(robot)

    # Attach the tool
    robot.attach_tool(tool)
    scene.add_attached_tool()

    time.sleep(3)

    # Remove the tool
    scene.remove_attached_tool()
    scene.remove_collision_mesh(tool.name)
    robot.detach_tool()
    time.sleep(1)
Exemplo n.º 3
0
import time

from compas.datastructures import Mesh

import compas_fab
from compas_fab.backends import RosClient
from compas_fab.robots import CollisionMesh
from compas_fab.robots import PlanningScene

with RosClient() as client:
    robot = client.load_robot()
    scene = PlanningScene(robot)
    assert robot.name == 'ur5'

    # create collision object
    mesh = Mesh.from_stl(compas_fab.get('planning_scene/cone.stl'))
    cm = CollisionMesh(mesh, 'tip')

    # attach it to the end-effector
    group = robot.main_group_name
    scene.attach_collision_mesh_to_robot_end_effector(cm, group=group)

    # sleep a bit before removing the tip
    time.sleep(1)

    scene.reset()
Exemplo n.º 4
0
import time

from compas.datastructures import Mesh

import compas_fab
from compas_fab.backends import RosClient
from compas_fab.robots import CollisionMesh
from compas_fab.robots import PlanningScene

with RosClient('localhost') as client:
    robot = client.load_robot()

    scene = PlanningScene(robot)
    mesh = Mesh.from_stl(compas_fab.get('planning_scene/floor.stl'))
    cm = CollisionMesh(mesh, 'floor')
    scene.add_collision_mesh(cm)

    # sleep a bit before terminating the client
    #time.sleep(1)

    #scene.remove_collision_mesh('floor')

Exemplo n.º 5
0
 def RunScript(self, robot):
     key = create_id(self, 'planning_scene')
     if robot:
         st[key] = PlanningScene(robot)
     return st.get(key, None)
import time

from compas.datastructures import Mesh
from compas.geometry import Box

from compas_fab.backends import RosClient
from compas_fab.robots import CollisionMesh
from compas_fab.robots import PlanningScene

with RosClient() as client:
    robot = client.load_robot()
    scene = PlanningScene(robot)
    assert robot.name == 'ur5_robot'

    brick = Box.from_width_height_depth(0.11, 0.07, 0.25)

    for i in range(5):
        mesh = Mesh.from_vertices_and_faces(brick.vertices, brick.faces)
        cm = CollisionMesh(mesh, 'brick')
        cm.frame.point.y += 0.5
        cm.frame.point.z += brick.zsize * i

        scene.append_collision_mesh(cm)

    # sleep a bit before removing the bricks
    time.sleep(1)

    scene.remove_collision_mesh('brick')
def main():
    parser = argparse.ArgumentParser()
    # ur_picknplace_multiple_piece
    parser.add_argument('-p',
                        '--problem',
                        default='ur_picknplace_single_piece',
                        help='The name of the problem to solve')
    parser.add_argument('-rob',
                        '--robot',
                        default='ur3',
                        help='The type of UR robot to use.')
    parser.add_argument('-m',
                        '--plan_transit',
                        action='store_false',
                        help='Plans motions between each picking and placing')
    parser.add_argument('-v',
                        '--viewer',
                        action='store_true',
                        help='Enables the viewer during planning (slow!)')
    parser.add_argument('-s',
                        '--save_result',
                        action='store_true',
                        help='save planning results as a json file')
    parser.add_argument(
        '-scale',
        '--model_scale',
        default=0.001,
        help='model scale conversion to meter, default 0.001 (from millimeter)'
    )
    parser.add_argument('-vik',
                        '--view_ikfast',
                        action='store_true',
                        help='Visualize each ikfast solutions')
    parser.add_argument('-tres',
                        '--transit_res',
                        default=0.01,
                        help='joint resolution (rad)')
    parser.add_argument('-ros',
                        '--use_ros',
                        action='store_true',
                        help='use ros backend with moveit planners')
    parser.add_argument('-cart_ts',
                        '--cartesian_time_step',
                        default=0.1,
                        help='cartesian time step in trajectory simulation')
    parser.add_argument('-trans_ts',
                        '--transit_time_step',
                        default=0.01,
                        help='transition time step in trajectory simulation')
    parser.add_argument('-per_conf_step',
                        '--per_conf_step',
                        action='store_true',
                        help='stepping each configuration in simulation')
    args = parser.parse_args()
    print('Arguments:', args)

    VIZ = args.viewer
    VIZ_IKFAST = args.view_ikfast
    TRANSITION_JT_RESOLUTION = float(args.transit_res)
    plan_transition = args.plan_transit
    use_moveit_planner = args.use_ros

    # sim settings
    CART_TIME_STEP = args.cartesian_time_step
    TRANSITION_TIME_STEP = args.transit_time_step
    PER_CONF_STEP = args.per_conf_step

    # transition motion planner settings
    RRT_RESTARTS = 5
    RRT_ITERATIONS = 40

    # choreo pkg settings
    choreo_problem_instance_dir = compas_fab.get('choreo_instances')
    unit_geos, static_obstacles = load_assembly_package(
        choreo_problem_instance_dir, args.problem, scale=args.model_scale)

    result_save_path = os.path.join(
        choreo_problem_instance_dir, 'results',
        'choreo_result.json') if args.save_result else None

    # urdf, end effector settings
    if args.robot == 'ur3':
        # urdf_filename = compas_fab.get('universal_robot/ur_description/urdf/ur3.urdf')
        urdf_filename = compas_fab.get(
            'universal_robot/ur_description/urdf/ur3_collision_viz.urdf')
        srdf_filename = compas_fab.get(
            'universal_robot/ur3_moveit_config/config/ur3.srdf')
    else:
        urdf_filename = compas_fab.get(
            'universal_robot/ur_description/urdf/ur5.urdf')
        srdf_filename = compas_fab.get(
            'universal_robot/ur5_moveit_config/config/ur5.srdf')

    urdf_pkg_name = 'ur_description'

    ee_filename = compas_fab.get(
        'universal_robot/ur_description/meshes/' +
        'pychoreo_workshop_gripper/collision/victor_gripper_jaw03.obj')
    # ee_sep_filename = compas_fab.get('universal_robot/ur_description/meshes/' +
    #                             'pychoreo_workshop_gripper/collision/victor_gripper_jaw03_rough_sep.obj')
    # ee_decomp_file_dir = compas_fab.get('universal_robot/ur_description/meshes/' +
    #                                 'pychoreo_workshop_gripper/collision/decomp')
    # ee_decomp_file_prefix = 'victor_gripper_jaw03_decomp_'
    # decomp_parts_num = 36

    client = RosClient() if use_moveit_planner else None

    # geometry file is not loaded here
    model = RobotModel.from_urdf_file(urdf_filename)
    semantics = RobotSemantics.from_srdf_file(srdf_filename, model)
    robot = RobotClass(model, semantics=semantics, client=client)

    group = robot.main_group_name
    base_link_name = robot.get_base_link_name()
    ee_link_name = robot.get_end_effector_link_name()
    ik_joint_names = robot.get_configurable_joint_names()

    # parse end effector mesh
    # ee_meshes = [Mesh.from_obj(os.path.join(ee_decomp_file_dir, ee_decomp_file_prefix + str(i) + '.obj')) for i in range(decomp_parts_num)]
    ee_meshes = [Mesh.from_obj(ee_filename)]
    # ee_meshes = [Mesh.from_obj(ee_sep_filename)]

    # define TCP transformation
    tcp_tf = Translation([0.099, 0, 0])  # in meters
    ur5_start_conf = [0, -1.65715, 1.71108, -1.62348, 0, 0]

    if use_moveit_planner:
        # TODO: attach end effector to the robot in planning scene
        # https://github.com/compas-dev/compas_fab/issues/66
        scene = PlanningScene(robot)
        scene.remove_all_collision_objects()
        client.set_joint_positions(group, ik_joint_names, ur5_start_conf)
    else:
        scene = None

    # add static collision obstacles
    co_dict = {}
    for i, static_obs_mesh in enumerate(static_obstacles):
        # offset the table a bit...
        cm = CollisionMesh(static_obs_mesh,
                           'so_' + str(i),
                           frame=Frame.from_transformation(
                               Translation([0, 0, -0.02])))
        if use_moveit_planner:
            scene.add_collision_mesh(cm)
        else:
            co_dict[cm.id] = {}
            co_dict[cm.id]['meshes'] = [cm.mesh]
            co_dict[cm.id]['mesh_poses'] = [cm.frame]

    if use_moveit_planner:
        # See: https://github.com/compas-dev/compas_fab/issues/63#issuecomment-519525879
        time.sleep(1)
        co_dict = scene.get_collision_meshes_and_poses()

    # ======================================================
    # ======================================================
    # start pybullet environment & load pybullet robot
    connect(use_gui=VIZ)
    pb_robot = create_pb_robot_from_ros_urdf(urdf_filename,
                                             urdf_pkg_name,
                                             planning_scene=scene,
                                             ee_link_name=ee_link_name)
    ee_attachs = attach_end_effector_geometry(ee_meshes, pb_robot,
                                              ee_link_name)

    # update current joint conf and attach end effector
    pb_ik_joints = joints_from_names(pb_robot, ik_joint_names)
    pb_end_effector_link = link_from_name(pb_robot, ee_link_name)
    if not use_moveit_planner:
        set_joint_positions(pb_robot, pb_ik_joints, ur5_start_conf)
    for e_at in ee_attachs:
        e_at.assign()

    # draw TCP frame in pybullet
    if has_gui():
        TCP_pb_pose = get_TCP_pose(pb_robot,
                                   ee_link_name,
                                   tcp_tf,
                                   return_pb_pose=True)
        handles = draw_pose(TCP_pb_pose, length=0.04)
        # wait_for_user()

    # deliver ros collision meshes to pybullet
    static_obstacles_from_name = convert_meshes_and_poses_to_pybullet_bodies(
        co_dict)
    # for now...
    for so_key, so_val in static_obstacles_from_name.items():
        static_obstacles_from_name[so_key] = so_val[0]

    for unit_name, unit_geo in unit_geos.items():
        geo_bodies = []
        for sub_id, mesh in enumerate(unit_geo.mesh):
            geo_bodies.append(convert_mesh_to_pybullet_body(mesh))
        unit_geo.pybullet_bodies = geo_bodies

    # check collision between obstacles and element geometries
    assert not sanity_check_collisions(unit_geos, static_obstacles_from_name)

    # from random import shuffle
    seq_assignment = list(range(len(unit_geos)))
    # shuffle(seq_assignment)
    element_seq = {seq_id: e_id for seq_id, e_id in enumerate(seq_assignment)}

    # for key, val in element_seq.items():
    #     # element_seq[key] = 'e_' + str(val)
    #     element_seq[key] = val

    if has_gui():
        for e_id in element_seq.values():
            # for e_body in brick_from_index[e_id].body: set_pose(e_body, brick_from_index[e_id].goal_pose)
            handles.extend(
                draw_pose(unit_geos[e_id].initial_pb_pose, length=0.02))
            handles.extend(draw_pose(unit_geos[e_id].goal_pb_pose,
                                     length=0.02))
            for e_body in unit_geos[e_id].pybullet_bodies:
                set_pose(e_body, unit_geos[e_id].initial_pb_pose)
        print('pybullet env loaded.')
        # wait_for_user()
        for h in handles:
            remove_debug(h)

    saved_world = WorldSaver()

    ik_fn = ikfast_ur3.get_ik if args.robot == 'ur3' else ikfast_ur5.get_ik
    tot_traj, graph_sizes = \
    direct_ladder_graph_solve_picknplace(pb_robot, ik_joint_names, base_link_name, ee_link_name, ik_fn,
        unit_geos, element_seq, static_obstacles_from_name,
        tcp_transf=pb_pose_from_Transformation(tcp_tf),
        ee_attachs=ee_attachs,
        max_attempts=100, viz=VIZ_IKFAST, st_conf=ur5_start_conf)

    picknplace_cart_plans = divide_nested_list_chunks(tot_traj, graph_sizes)

    saved_world.restore()
    print('Cartesian planning finished.')

    # reset robot and parts for better visualization
    set_joint_positions(pb_robot, pb_ik_joints, ur5_start_conf)
    for ee in ee_attachs:
        ee.assign()
    for e_id in element_seq.values():
        for e_body in unit_geos[e_id].pybullet_bodies:
            set_pose(e_body, unit_geos[e_id].initial_pb_pose)

    # if has_gui():
    #     wait_for_user()

    def flatten_unit_geos_bodies(in_dict):
        out_list = []
        for ug in in_dict.values():
            out_list.extend(ug.pybullet_bodies)
        return out_list

    if plan_transition:
        print('Transition planning started.')

        for seq_id, unit_picknplace in enumerate(picknplace_cart_plans):
            print('----\ntransition seq#{}'.format(seq_id))
            e_id = element_seq[seq_id]

            if seq_id != 0:
                tr_start_conf = picknplace_cart_plans[seq_id -
                                                      1]['place_retreat'][-1]
            else:
                tr_start_conf = ur5_start_conf

            # obstacles=static_obstacles + cur_mo_list
            place2pick_st_conf = list(tr_start_conf)
            place2pick_goal_conf = list(
                picknplace_cart_plans[seq_id]['pick_approach'][0])
            # assert not client.is_joint_state_colliding(group, ik_joint_names, place2pick_st_conf)
            # assert not client.is_joint_state_colliding(group, ik_joint_names, place2pick_goal_conf)

            if use_moveit_planner:
                # TODO: add collision objects

                st_conf = Configuration.from_revolute_values(
                    place2pick_st_conf)
                goal_conf = Configuration.from_revolute_values(
                    place2pick_goal_conf)
                goal_constraints = robot.constraints_from_configuration(
                    goal_conf, [math.radians(1)] * 6, group)
                place2pick_jt_traj = robot.plan_motion(goal_constraints,
                                                       st_conf,
                                                       group,
                                                       planner_id='RRTConnect')
                place2pick_path = [
                    jt_pt['values']
                    for jt_pt in place2pick_jt_traj.to_data()['points']
                ]

            else:
                saved_world = WorldSaver()

                set_joint_positions(pb_robot, pb_ik_joints, place2pick_st_conf)
                for ee_a in ee_attachs:
                    ee_a.assign()

                place2pick_path = plan_joint_motion(
                    pb_robot,
                    pb_ik_joints,
                    place2pick_goal_conf,
                    attachments=ee_attachs,
                    obstacles=list(static_obstacles_from_name.values()) +
                    flatten_unit_geos_bodies(unit_geos),
                    self_collisions=True,
                    resolutions=[TRANSITION_JT_RESOLUTION] * len(pb_ik_joints),
                    restarts=RRT_RESTARTS,
                    iterations=RRT_ITERATIONS,
                )
                saved_world.restore()

                if not place2pick_path:
                    saved_world = WorldSaver()

                    print('****\nseq #{} cannot find place2pick transition'.
                          format(seq_id))
                    print('Diagnosis...')

                    cfn = get_collision_fn_diagnosis(pb_robot, pb_ik_joints, \
                        obstacles=list(static_obstacles_from_name.values()) + flatten_unit_geos_bodies(unit_geos),
                        attachments=ee_attachs, self_collisions=True)

                    print('start pose:')
                    cfn(place2pick_st_conf)

                    print('end pose:')
                    cfn(place2pick_goal_conf)

                    saved_world.restore()
                    print('Diagnosis over')

            pick2place_st_conf = picknplace_cart_plans[seq_id]['pick_retreat'][
                -1]
            pick2place_goal_conf = picknplace_cart_plans[seq_id][
                'place_approach'][0]

            if use_moveit_planner:
                st_conf = Configuration.from_revolute_values(
                    picknplace_cart_plans[seq_id]['pick_retreat'][-1])
                goal_conf = Configuration.from_revolute_values(
                    picknplace_cart_plans[seq_id]['place_approach'][0])
                goal_constraints = robot.constraints_from_configuration(
                    goal_conf, [math.radians(1)] * 6, group)
                pick2place_jt_traj = robot.plan_motion(goal_constraints,
                                                       st_conf,
                                                       group,
                                                       planner_id='RRTConnect')
                pick2place_path = [
                    jt_pt['values']
                    for jt_pt in pick2place_jt_traj.to_data()['points']
                ]
            else:
                saved_world = WorldSaver()

                # create attachement without needing to keep track of grasp...
                set_joint_positions(
                    pb_robot, pb_ik_joints,
                    picknplace_cart_plans[seq_id]['pick_retreat'][0])
                # attachs = [Attachment(robot, tool_link, invert(grasp.attach), e_body) for e_body in brick.body]
                element_attachs = [create_attachment(pb_robot, pb_end_effector_link, e_body) \
                    for e_body in unit_geos[e_id].pybullet_bodies]

                set_joint_positions(pb_robot, pb_ik_joints, pick2place_st_conf)
                for ee_a in ee_attachs:
                    ee_a.assign()
                for e_a in element_attachs:
                    e_a.assign()

                pick2place_path = plan_joint_motion(
                    pb_robot,
                    pb_ik_joints,
                    pick2place_goal_conf,
                    obstacles=list(static_obstacles_from_name.values()) +
                    flatten_unit_geos_bodies(unit_geos),
                    attachments=ee_attachs + element_attachs,
                    self_collisions=True,
                    resolutions=[TRANSITION_JT_RESOLUTION] * len(pb_ik_joints),
                    restarts=RRT_RESTARTS,
                    iterations=RRT_ITERATIONS,
                )

                saved_world.restore()

                if not pick2place_path:
                    saved_world = WorldSaver()

                    print('****\nseq #{} cannot find pick2place transition'.
                          format(seq_id))
                    print('Diagnosis...')

                    cfn = get_collision_fn_diagnosis(pb_robot, pb_ik_joints,
                        obstacles=list(static_obstacles_from_name.values()) + flatten_unit_geos_bodies(unit_geos), \
                        attachments=ee_attachs + element_attachs, self_collisions=True)

                    print('start pose:')
                    cfn(pick2place_st_conf)

                    print('end pose:')
                    cfn(pick2place_goal_conf)

                    saved_world.restore()

                    print('Diagnosis over')

            picknplace_cart_plans[seq_id]['place2pick'] = place2pick_path
            picknplace_cart_plans[seq_id]['pick2place'] = pick2place_path

            for e_body in unit_geos[e_id].pybullet_bodies:
                set_pose(e_body, unit_geos[e_id].goal_pb_pose)

            if seq_id == len(picknplace_cart_plans) - 1:
                saved_world = WorldSaver()

                set_joint_positions(
                    pb_robot, pb_ik_joints,
                    picknplace_cart_plans[seq_id]['place_retreat'][-1])
                for ee_a in ee_attachs:
                    ee_a.assign()

                return2idle_path = plan_joint_motion(
                    pb_robot,
                    pb_ik_joints,
                    ur5_start_conf,
                    obstacles=list(static_obstacles_from_name.values()) +
                    flatten_unit_geos_bodies(unit_geos),
                    attachments=ee_attachs,
                    self_collisions=True,
                    resolutions=[TRANSITION_JT_RESOLUTION] * len(pb_ik_joints),
                    restarts=RRT_RESTARTS,
                    iterations=RRT_ITERATIONS,
                )

                saved_world.restore()
                picknplace_cart_plans[seq_id]['return2idle'] = return2idle_path

        print('Transition planning finished.')

    # convert to ros JointTrajectory
    traj_json_data = []
    traj_time_count = 0.0
    for i, element_process in enumerate(picknplace_cart_plans):
        e_proc_data = {}
        for sub_proc_name, sub_process in element_process.items():
            sub_process_jt_traj_list = []
            for jt_sol in sub_process:
                sub_process_jt_traj_list.append(
                    JointTrajectoryPoint(values=jt_sol,
                                         types=[0] * 6,
                                         time_from_start=Duration(
                                             traj_time_count, 0)))
                traj_time_count += 1.0  # meaningless timestamp
            e_proc_data[sub_proc_name] = JointTrajectory(
                trajectory_points=sub_process_jt_traj_list,
                start_configuration=sub_process_jt_traj_list[0]).to_data()
        traj_json_data.append(e_proc_data)

    if result_save_path:
        with open(result_save_path, 'w+') as outfile:
            json.dump(traj_json_data, outfile, indent=4)
            print('planned trajectories saved to {}'.format(result_save_path))

    print('\n*************************\nplanning completed. Simulate?')
    if has_gui():
        wait_for_user()

    for e_id in element_seq.values():
        for e_body in unit_geos[e_id].pybullet_bodies:
            set_pose(e_body, unit_geos[e_id].initial_pb_pose)

    display_picknplace_trajectories(pb_robot, ik_joint_names, ee_link_name,
                                    unit_geos, traj_json_data, \
                                    ee_attachs=ee_attachs,
                                    cartesian_time_step=CART_TIME_STEP, transition_time_step=TRANSITION_TIME_STEP, step_sim=True, per_conf_step=PER_CONF_STEP)

    if use_moveit_planner: scene.remove_all_collision_objects()
Exemplo n.º 8
0
import time

from compas.datastructures import Mesh

import compas_fab
from compas_fab.backends import RosClient
from compas_fab.robots import CollisionMesh
from compas_fab.robots import PlanningScene

with RosClient('localhost') as client:
    robot = client.load_robot()

    scene = PlanningScene(robot)

    # create collison objects
    mesh = Mesh.from_stl(compas_fab.get('planning_scene/cone.stl'))
    cm = CollisionMesh(mesh, 'tip')

    # attach it to the end-effector
    group = robot.main_group_name
    scene.attach_collision_mesh_to_robot_end_effector(cm, group=group)

    # sleep a bit before removing collision mesh
    time.sleep(3)

    scene.remove_attached_collision_mesh('tip')
    scene.remove_collision_mesh('tip')
    time.sleep(1)
Exemplo n.º 9
0
picking_frame = Frame.from_data(data['picking_frame'])
picking_frame.point += tolerance_vector

# define savelevel frames 'above' the picking- and target frames
savelevel_picking_frame = picking_frame.copy()
savelevel_picking_frame.point += savelevel_vector
savelevel_target_frame = target_frame.copy()
savelevel_target_frame.point += savelevel_vector

# settings for plan_motion
tolerance_position = 0.001
tolerance_axes = [math.radians(1)] * 3

with RosClient('localhost') as client:
    robot = client.load_robot()
    scene = PlanningScene(robot)

    scene.remove_collision_mesh('brick_wall')

    # attach tool
    robot.attach_tool(tool)
    # add tool to scene
    scene.add_attached_tool()

    # create an attached collision mesh to the robot's end effector.
    ee_link_name = robot.get_end_effector_link_name()
    brick_acm = AttachedCollisionMesh(
        CollisionMesh(element_tool0.mesh, 'brick'), ee_link_name)
    # add the collision mesh to the scene
    scene.add_attached_collision_mesh(brick_acm)
Exemplo n.º 10
0
import time

from compas_fab.backends import RosClient
from compas_fab.robots import PlanningScene
from compas_fab.robots.ur5 import Robot

with RosClient('localhost') as client:
    robot = Robot(client)
    scene = PlanningScene(robot)
    scene.remove_collision_mesh('floor')

    # sleep a bit before terminating the client
    time.sleep(1)
    # ...

    placing_trajectory = robot.plan_cartesian_motion(
        frames_tool0,
        last_configuration,
        max_step=0.01,
        attached_collision_meshes=[attached_brick_mesh])
    return moving_trajectory, placing_trajectory


# NOTE: If you run Docker Toolbox, change `localhost` to `192.168.99.100`
with RosClient('localhost') as client:

    robot = client.load_robot()
    scene = PlanningScene(robot)
    robot.attach_tool(tool)

    # 1. Add a collison mesh to the planning scene: floor, desk, etc.
    # ...

    if clear_planning_scene:
        scene.remove_collision_mesh('brick_wall')
        time.sleep(0.1)

    # 2. Compute picking trajectory
    # picking_trajectory = ...

    # 3. Save the last configuration from that trajectory as new start_configuration
    # start_configuration = ...
Exemplo n.º 12
0
# load settings (shared by GH)
settings_file = os.path.join(DATA, "settings.json")
with open(settings_file, 'r') as f:
    data = json.load(f)

# define brick dimensions
width, length, height = data['brick_dimensions']

# define target frame
target_frame = Frame([-0.26, -0.28, height], [1, 0, 0], [0, 1, 0])

# Move brick to target frame
element = Element.from_data(data['brick'])
element.transform(
    Transformation.from_frame_to_frame(element.frame, target_frame))

with RosClient('localhost') as client:
    robot = client.load_robot()
    scene = PlanningScene(robot)

    # create a CollisionMesh from the element and add it to the scene
    brick = CollisionMesh(element.mesh, 'brick_wall')
    scene.append_collision_mesh(brick)

    time.sleep(2)

    # Remove elements from scene
    # scene.remove_collision_mesh(brick.id)
    # time.sleep(1)
from compas_fab.robots import Tool

from compas.datastructures import Mesh
from compas.geometry import Frame

HERE = os.path.dirname(__file__)
DATA = os.path.abspath(os.path.join(HERE, "..", "data"))

# create tool from mesh and frame
mesh = Mesh.from_stl(os.path.join(DATA, "vacuum_gripper.stl"))
frame = Frame([0.07, 0, 0], [0, 0, 1], [0, 1, 0])
tool = Tool(mesh, frame)
tool.to_json(os.path.join(DATA, "vacuum_gripper.json"))

with RosClient('localhost') as client:
    robot = client.load_robot()
    scene = PlanningScene(robot)
    robot.attach_tool(tool)

    # add attached tool to planning scene
    scene.add_attached_tool()

    # now we can convert frames at robot's tool tip and flange
    frames_tcf = [
        Frame((-0.309, -0.046, -0.266), (0.276, 0.926, -0.256),
              (0.879, -0.136, 0.456))
    ]
    frames_tcf0 = robot.from_tcf_to_t0cf(frames_tcf)

    time.sleep(1)
Exemplo n.º 14
0
element0 = Element.from_data(data['element0'])

# define picking frame
picking_frame = Frame.from_data(data['picking_frame'])

element0.transform(
    Transformation.from_frame_to_frame(element0._tool_frame, picking_frame))

# now we need to bring the element's mesh into the robot's tool0 frame
element0_tool0 = element0.copy()
T = Transformation.from_frame_to_frame(element0_tool0._tool_frame, tool.frame)
element0_tool0.transform(T)

with RosClient('localhost') as client:
    robot = client.load_robot()
    scene = PlanningScene(robot)

    # attach tool
    robot.attach_tool(tool)
    # add tool to scene
    scene.add_attached_tool()

    # create an attached collision mesh to the robot's end effector.
    ee_link_name = robot.get_end_effector_link_name()
    brick_acm = AttachedCollisionMesh(
        CollisionMesh(element0_tool0.mesh, 'brick'), ee_link_name)
    # add the collision mesh to the scene
    scene.add_attached_collision_mesh(brick_acm)

    time.sleep(2)
Exemplo n.º 15
0
import time

from compas.datastructures import Mesh
from compas.geometry import Frame

import compas_fab
from compas_fab.backends import RosClient
from compas_fab.robots import PlanningScene
from compas_fab.robots import Tool

with RosClient() as client:
    robot = client.load_robot()
    scene = PlanningScene(robot)
    assert robot.name == 'ur5_robot'

    # create collision object
    mesh = Mesh.from_stl(compas_fab.get('planning_scene/cone.stl'))
    t1cf = Frame([0.14, 0, 0], [0, 0, 1], [0, 1, 0])          # TODO: check this frame!
    tool = Tool(mesh, t1cf, name='tip')
    scene.add_attached_tool(tool)

    # sleep a bit before removing the tip
    time.sleep(1)

    # check if it's really there
    planning_scene = robot.client.get_planning_scene()
    acm = planning_scene.robot_state.attached_collision_objects
    assert acm[0].object['id'].startswith('tip_')

    scene.remove_attached_tool()
    assembly = Assembly.from_json(filepath)

# create an attached collision mesh to be attached to the robot's end effector.
T = Transformation.from_frame_to_frame(element0._tool_frame, tool.frame)
element0_tool0 = element0.transformed(T)
attached_element_mesh = AttachedCollisionMesh(
    CollisionMesh(element0_tool0.mesh, 'element'), 'ee_link')

# ==============================================================================
# From here on: fill in code, whereever you see this dots ...

# NOTE: If you run Docker Toolbox, change `localhost` to `192.168.99.100`
with RosClient('localhost') as client:

    robot = client.load_robot()
    scene = PlanningScene(robot)
    robot.attach_tool(tool)

    # 1. Add a collison mesh to the planning scene: floor, desk, etc.
    for cm in scene_collision_meshes:
        scene.add_collision_mesh(cm)
    if not LOAD_FROM_EXISTING:
        scene.remove_collision_mesh('assembly')

    # 2. Compute picking trajectory
    picking_trajectory = plan_picking_motion(robot, picking_frame,
                                             safelevel_picking_frame,
                                             picking_configuration,
                                             attached_element_mesh)

    # 3. Save the last configuration from that trajectory as new