Exemplo n.º 1
0
 def test_prob_coal_counts(self):
     self.assertAlmostEqual(
         coal.prob_coal_counts(2, 2, 100, 1000),
         0.904837418036)
     self.assertAlmostEqual(
         coal.prob_coal_counts(5, 2, 100, 1000),
         0.0184034834527)
Exemplo n.º 2
0
    def test_coal_counts(self):
        b = 1
        t = 1000.0
        n = 1000

        for a in xrange(1, 100):
            i = coal.prob_coal_counts(a, b, t, n)
            j = coal.cdf_mrca(t, a, n)
            fequal(i, j)

        for a in xrange(1, 10):
            i = sum(coal.prob_coal_counts(a, b, t, n)
                    for b in xrange(1, a+1))
            fequal(i, 1.0)
Exemplo n.º 3
0
    def test_coal_counts2(self):
        b = 3
        t = 1000.0
        n = 1000

        for b in xrange(1, 10):
            for a in xrange(b, 10):
                i = coal.prob_coal_counts(a, b, t, n)
                j = coal.prob_coal_counts_slow(a, b, t, n)
                fequal(i, j)
Exemplo n.º 4
0
    def test_cdf_mrca2(self):
        n = 1000
        k = 6
        step = 10
        x = list(frange(0, 5000, step))
        y = [coal.prob_mrca(i, k, n) * step for i in x]
        y2 = cumsum(y)
        y3 = [coal.cdf_mrca(t, k, n) for t in x]
        y4 = [coal.prob_coal_counts(k, 1, t, n) for t in x]

        fequals(y2, y3, eabs=.01)
        fequals(y3, y4)
Exemplo n.º 5
0
def sample_coal_cond_counts_cdf(a, b, t, n, p=None):
    """
    Samples the next coalescent between 'a' lineages in a population size of
    'n', conditioned on there being 'b' lineages at time 't'.
    """
    
    # this code solves this equation for t
    #   cdf(t) - p = 0
    # where p ~ U(0, 1)

    import scipy.optimize

    if p is None:
        p = random.random()

    # compute constants
    lama = -a*(a-1)/2.0/n
    C0 = stats.prod((b+y)*(a-1-y)/(a-1+y) for y in xrange(b))
    c = -b*(b-1)/2.0/n
    d = 1.0/stats.factorial(b) * (-lama) / coal.prob_coal_counts(a, b, t, n)

    # CDF(t) - p
    def f(x):
        if x <= 0:
            return x - p
        if x >= t:
            return 1.0 - p + (x - t)

        C = C0
        s = exp(c*t) * (exp((lama-c)*x)-1.0) / (lama-c) * C
        for k in xrange(b+1, a):
            k1 = k - 1
            lam = -k*k1/2.0/n
            C = (b+k1)*(a-1-k1)/(a-1+k1)/(b-k) * C
            s += exp(lam*t) * (exp((lama-lam)*x) - 1.0) / (lama - lam) \
                 * (2*k-1) / (k1+b) * C
        print "f", p, x, s * d - p

        return s * d - p
    
    return f