class DatasetIntegrityView(View): TITLE = "Dataset Integrity Overview" N_COLUMNS = 3 N_ROWS = 2 def __init__(self, parent, controller): super().__init__(parent, controller) self.state_bar = StateBar(self, controller.status) self.table = Table(self, controller.overview) self.update_button = tk.Button(self, text="Check for update", command=Callback( self.controller.update_app)) self.layout() def layout(self): self.navigation.grid(row=0, column=0, columnspan=self.N_COLUMNS, sticky="we") self.title.grid(row=1, column=0) self.state_bar.grid(row=1, column=1) self.update_button.grid(row=1, column=2) self.table.grid(row=2, column=0, columnspan=self.N_COLUMNS, pady=(25, )) self.make_flexible(n_rows=self.N_ROWS, n_cols=self.N_COLUMNS) self.grid(row=0, column=0, sticky="nsew") def update(self): self.state_bar.update(self.controller.status) self.table.update(self.controller.overview)
def exposure_summary_page(exposure): page = html.Div([ Header(), html.Div([ HalfRowCard("TIV by State", Table(exposure.tiv_by_state(), display_header=True)), HalfRowCard("TIV by State", TIVBarGraph(exposure.tiv_by_state(), "State")) ], className="row "), html.Div([ HalfRowCard( "TIV by Occupancy", Table(exposure.tiv_by_occupancy(), display_header=True)), HalfRowCard("TIV by Occupancy", TIVBarGraph(exposure.tiv_by_occupancy(), "Occupancy")) ], className="row "), html.Div([ HalfRowCard( "TIV by State", Table(exposure.tiv_by_construction(), display_header=True)), HalfRowCard( "TIV by State", TIVBarGraph(exposure.tiv_by_construction(), "Construction")) ], className="row "), ], className="container") return page
def __init__(self, parent, controller): super().__init__(parent, controller) self.state_bar = StateBar(self, controller.status) self.table = Table(self, controller.overview) self.update_button = tk.Button(self, text="Check for update", command=Callback( self.controller.update_app)) self.layout()
def overview_page(summary, company_facts, key_losses): page = html.Div([ Header(), html.Div([ HalfRowCard("Summary", TextArea(summary, "summary")), HalfRowCard("Key Info", Table(company_facts)) ], className="row"), html.Div([ FullRowCard("Key Losses", Table(key_losses, display_header=True)) ], className="row") ], className="container") return page
def ep_curve_page(ep_curves): page = html.Div([ Header(), html.Div([ HalfRowCard("EP all peril", Table(ep_curves.get_ep_curves(['netprecat'], ['ALL'], ['AEP', 'OEP']), display_header=True)), HalfRowCard("EP all peril", EPGraph(ep_curves.get_ep_curves(['netprecat'], ['ALL'], ['AEP', 'OEP']))) ], className="row "), html.Div([ HalfRowCard("EP Windstorm", Table(ep_curves.get_ep_curves(['netprecat'], ['Windstorm'], ['AEP', 'OEP']), display_header=True)), HalfRowCard("EP Windstorm", EPGraph(ep_curves.get_ep_curves(['netprecat'], ['Windstorm'], ['AEP', 'OEP']))) ], className="row "), html.Div([ HalfRowCard("EP Earthquake", Table(ep_curves.get_ep_curves(['netprecat'], ['Earthquake'], ['AEP', 'OEP']), display_header=True)), HalfRowCard("EP Earthquake", EPGraph(ep_curves.get_ep_curves(['netprecat'], ['Earthquake'], ['AEP', 'OEP']))) ], className="row "), ], className="container") return page
def add_data_table(self, identifier, dataframe, name, plot_options=None): """add a datatable to the root-level section Args: identifier (str): MP category ID (`mp_cat_id`) dataframe (pandas.DataFrame): tabular data as Pandas DataFrame name (str): table name, optional if only one table in section plot_options (dict): options for according plotly graph """ # TODO: optional table name, required if multiple tables per root-level section table_start = mp_level01_titles[1] + '_' if not name.startswith(table_start): name = table_start + name name = ''.join([replacements.get(c, c) for c in name]) self.document.rec_update( nest_dict(Table(dataframe).to_dict(), [identifier, name])) self.document[identifier].insert_default_plot_options( dataframe, name, update_plot_options=plot_options)
from utils import Data from constants import peak_values_and_dates, slope_changes_and_dates, insights from components import DatePickerRange, Table, BarPlot, BoxPlot, InteractivePlot import dash_html_components as html from dash.dependencies import Input, Output from datetime import datetime ## Data Loading data = Data() prepared_data = data.retrieve_prepared_data() splitted_data = data.retrieve_splitted_date_data() # Importing components date_picker_range = DatePickerRange() table = Table() bar_plot = BarPlot() box_plot = BoxPlot() interactive_plot = InteractivePlot() ## App Layout app.layout = html.Div( [ html.H1('Data Report', style={ 'textAlign': 'center', 'background': '7f44f8', 'color': 'white' }), html.Div([ 'Date selector for the interactive graphic',
open('./assets/data_remaining_persons.pkl', 'rb')) remaining_places = pickle.load(open('./assets/data_remaining_places.pkl', 'rb')) cos_sim_matrix = pd.read_pickle("./assets/data_cosine_similarity_matrix.pkl") overview = html.Div( id="body1", children=[ Header("overview"), html.Div(id="ColumnBlockOverview", children=[ Scatter(overview_tsne), BarOverview(overview_persons), html.Div(id="tableHeadline", children=[html.H4(["Collection of Books"])]), Table(author_data[["Title", "Author", "Publishing Date"]]), ]), html.Div(id="MapBlock", children=[Map(overview_places)]) ]) book = html.Div( id="body1", children=[ Header("book"), Dropdown("book", list(specific_entities.keys())), html.Div(id="ColumnBlockBook", children=[ Author(), html.Div( id="specTitBox", children=[html.H1(id="specificTitle", children=[])]),