Exemplo n.º 1
0
def getBFGS(cD, params_new, params_k, A_k):
    s_vector = M.subVek(params_new, params_k)
    y_vector = M.subVek(cV.gradPhi(params_new, cD), cV.gradPhi(params_k, cD))

    # s_Matrix and y_Matix is a column, not a row, therefor copyTrans
    s_Matrix = M.Matrix([s_vector]).copyTrans()
    y_Matrix = M.Matrix([y_vector]).copyTrans()

    dividend = A_k.mult(s_Matrix)
    dividend = dividend.mult(dividend.copyTrans())
    divisor = M.scal(s_vector, A_k.image(s_vector))
    quotient = dividend
    quotient.scale(1.0 / divisor)

    rankOneMod = M.subMatrix(A_k, quotient)

    dividend2 = y_Matrix.mult(y_Matrix.copyTrans())

    # here could be a division through zero. If this occurence, then I should just translate params_new a liiiitle bit...
    divisor2 = M.scal(y_vector, s_vector)

    quotient = dividend2
    #print( 'vectors are')
    #print(y_vector)
    #print( s_vector)
    #print( cV.gradPhi(params_new , cD))
    quotient.scale(1.0 / divisor2)

    rankTwoMod = M.addMatrix(rankOneMod, quotient)

    return rankTwoMod
Exemplo n.º 2
0
def vizLowValue( cD , n , first_bound, second_bound , third_bound):
    grid = pS.getGrid(n)
    x_1 = []
    y_1 = []
    x_2 = []
    y_2 = []
    x_3 = []
    y_3 = []
    b = 0
    d = 0

    for point in grid:
        while (True):
            try:
                value = cV.phi(point, cD)
                if value <= first_bound:
                    x_1.append(point[0])
                    y_1.append(point[1])
                else:
                    if value <= second_bound:
                        x_2.append(point[0])
                        y_2.append(point[1])
                    else:
                        if value <= third_bound:
                            x_3.append(point[0])
                            y_3.append(point[1])

                if point[0] > b:
                    b = point[0]
                if point[1] > d:
                    d = point[1]
                break
            except ZeroDivisionError:
                # print('zero division at',pair)
                break
    mp.plot(x_1 , y_1 , 'go')
    mp.plot(x_2 , y_2 , 'yo')
    mp.plot(x_3, y_3, 'ro')
    mp.axis( [ 0, b, 0, d ] )
    # print(vertices)
    mp.show()
    if len(x_1) > 0 :
        params = [ x_1[0] , y_1[0] ]
        vertex = cV.gamma(cD, params)
        print( ' Point near to result , gamma params , phi-value , gradient ')
        print(vertex)
        print( params)
        print( cV.phi( params , cD ) )
        print( cV.gradPhi( params , cD) )
    if len(x_1) > 1 :
        lastIndex = len( x_1 ) - 1
        params = [x_1[lastIndex],y_1[lastIndex]]
        print(' ANOTHER one is  ')
        vertex = cV.gamma(cD, params)
        print(vertex)
        print(params)
        print(cV.phi(params, cD))
        print(cV.gradPhi(params, cD))
Exemplo n.º 3
0
def getPositiveGrad( grid , cD ):
    result = []
    gradNorm_result = math.inf
    for point in grid:
        while (True):
            try:
                scal_point = M.scal(cV.gradPhi( point , cD ), point)
                gradNorm_point = M.norm(cV.gradPhi(point, cD))
                if scal_point >= 0 and gradNorm_point < gradNorm_result:
                    result = point
                    gradNorm_result = gradNorm_point
                break
            except ZeroDivisionError:
                # print('zero division at',pair)
                break
    return result
Exemplo n.º 4
0
def coneVolumeDescendArmijo(cD, start, crease, efficiency, beta_1, beta_2):

    result = start
    n = 0

    previous = [-1, -1]

    print('gehe in while schleife ')
    while (cV.phi(result, cD) > eps_descend):
        if M.dist(previous, result) > minimalStep_descendArmijo:
            previous[0] = result[0]
            previous[1] = result[1]
            d = M.scaleVek(-1, cV.gradPhi(result, cD))
            #d = M.scaleVek( 1 / M.norm(d) , d )
            alpha = sS.stepSizeArmijo(cD, result, d, crease, efficiency,
                                      beta_1, beta_2)
            result = M.addVek(result, M.scaleVek(alpha, d))
        else:
            print('versuche es mit BFGS und BFGSApprox')
            result_1 = coneVolumeDescendBFGSApprox(cD, result, previous,
                                                   crease, efficiency, beta_1,
                                                   beta_2)
            result_2 = coneVolumeDescendBFGS(cD, result, previous, crease,
                                             efficiency, beta_1, beta_2)

            if cV.phi(result_1, cD) < cV.phi(result_2, cD):
                return result_1
            else:
                return result_2

        n = n + 1
    return result
Exemplo n.º 5
0
def powellFunction_1(cD, params, d, step):
    dividend = cV.phi(M.addScaleVek(params, step, d), cD) - cV.phi(params, cD)
    divisor = step * M.scal(cV.gradPhi(params, cD), d)

    if (step <= eps):
        return 1

    return dividend / divisor
Exemplo n.º 6
0
def scalGradNormed( params , cD ):
    v = params
    w = cV.gradPhi( params , cD )
    result = M.scal( w , v )
    norm_1 = M.norm( v )
    norm_2 = M.norm( w )

    #if norm_2 * norm_1 == 0:
    #    return 0
    return result / ( norm_1 * norm_2 )
Exemplo n.º 7
0
def vizLowGrad( cD , n , first_bound, second_bound , third_bound):

    grid = pS.getGrid(n)
    x_1 = []
    y_1 = []
    x_2 = []
    y_2 = []
    x_3 = []
    y_3 = []
    b = 0
    d = 0

    for point in grid:
        while (True):
            try:
                value = M.norm(cV.gradPhi(point, cD))
                if value <= first_bound:
                    x_1.append(point[0])
                    y_1.append(point[1])
                else:
                    if value <= second_bound:
                        x_2.append(point[0])
                        y_2.append(point[1])
                    else:
                        if value <= third_bound:
                            x_3.append(point[0])
                            y_3.append(point[1])

                if point[0] > b:
                    b = point[0]
                if point[1] > d:
                    d = point[1]
                break
            except ZeroDivisionError:
                # print('zero division at',pair)
                break
    mp.plot(x_1 , y_1 , 'go')
    mp.plot(x_2 , y_2 , 'yo')
    mp.plot(x_3, y_3, 'ro')
    mp.axis( [ 0, b, 0, d ] )
    # print(vertices)
    mp.show()
Exemplo n.º 8
0
def coneVolumeDescendBFGS(cD, params_new, params_prev, crease, efficiency,
                          beta_1, beta_2):
    A_k = M.idMatrix(2)
    n = 0

    while (cV.phi(params_new, cD) > eps_descend):

        # ICH VERÄNDERE HIER MEIN CREASE...
        crease = 0.000001  #cV.phi( params_new , cD) * 0.00000001

        while (True):
            try:
                A_k = BFGS.getBFGS(cD, params_new, params_prev, A_k)
                break
            except ZeroDivisionError:
                print('es geht nicht besser')
                return params_new
                break

        antiGrad = M.scaleVek(-1, cV.gradPhi(params_new, cD))
        d = A_k.lgsSolve(antiGrad)
        d = M.scaleVek(1.0 / M.norm(d), d)

        alpha = sS.stepSize_posGrad(
            cD, params_new, d, n)  # crease , efficiency , beta_1 , beta_2 )
        d = M.scaleVek(alpha, d)

        params_prev = [params_new[0], params_new[1]]
        params_new = M.addVek(params_new, d)

        if (M.dist(params_new, params_prev) < minimalStep_BFGS):
            print(' distance is lower than minimalStep of BFGS ')
            break

        n = n + 1

    return params_new
Exemplo n.º 9
0
def powellFunction_2(cD, params, d, step):
    v = cV.gradPhi(M.addScaleVek(params, step, d))
    dividend = M.scal(v, d)
    divisor = M.scal(cV.gradPhi(params, cD), d)

    return dividend / divisor
Exemplo n.º 10
0
def stepSizeArmijo(cD, point, d, crease, efficiency, beta_1, beta_2):
    result = -efficiency * (M.scal(cV.gradPhi(point, cD), d) / (M.norm(d)**2))
    while notEfficient(cD, point, d, result, crease):
        result = beta_2 * result
    return result
Exemplo n.º 11
0
def notEfficient(cD, point, d, stepSize, crease):
    v = M.addVek(point, M.scaleVek(stepSize, d))
    upper_bound = cV.phi(point, cD) + crease * stepSize * M.scal(
        cV.gradPhi(point, cD), d) / M.norm(d)
    return cV.phi(v, cD) > upper_bound
Exemplo n.º 12
0
def scalAbsGrad( params , cD ):
    return math.fabs(M.scal( cV.gradPhi( params , cD ) , params ))
Exemplo n.º 13
0
def scalGrad( params , cD  ):
    return M.scal( cV.gradPhi( params , cD ) , params )
Exemplo n.º 14
0
import vizualization as v

polygon_test2 = [[2.673368179682499, 3.09152986544487],
                 [1.2086453601351808, 4.28111986768648],
                 [-1.1761317014903958, -0.022433820601322707],
                 [-3.4952312190856785, -4.881491593765966],
                 [0.789349380758395, -2.4687243187640626]]
cD = cV.getConeVol(polygon_test2)

params_now = [4.7, 1.6152821997297826]
print(cV.gamma(cD, params_now))
print(cV.phi(params_now, cD))
d = [
    -0.2083940408151545, -0.9780449497608644
]  # should come from a BFGS algorithm to test the efficiency of BFGS directions
grad = M.scaleVek(1.0 / M.norm(cV.gradPhi(params_now, cD)),
                  cV.gradPhi(params_now, cD))
grad_approx = cV.gradPhiApprox(params_now, cD, 0.00001)
stepSize = 1
params_next = M.addVek(params_now, M.scaleVek(stepSize, d))
v.visiualizeLowValueOnGrid(0.001, 0.00001, cD, params_now, 0.02405, 0.024059,
                           0.02406)
v.vizNiveauGradOnGrid(0.001, 0.00001, cD, params_now, d, 0.000001)
v.vizNiveauGradOnGrid(0.001, 0.00001, cD, params_now, grad, 0.000001)
v.vizNiveauGradOnGrid(0.001, 0.00001, cD, params_now, grad_approx, 0.000001)
n = 0
diff = (1 * cV.phi(params_now, cD)) - (1 * cV.phi(params_next, cD))
d = [-1, 2]
while (diff < 0):
    stepSize = stepSize * 0.5
    params_next = M.addVek(params_now, M.scaleVek(stepSize, d))