l_tau = ['tau_dr', 'tau_ols', 'tau_ols_ps', 'tau_resid'] output = 'results/2019-10-30_' + exp_name + '.csv' l_scores = [] for args['citcio'] in [False, True]: for args['model'] in ["dlvm", "lrmf"]: for args['seed'] in range_seed: for args['prop_miss'] in range_prop_miss: for args['n'] in range_n: for args['p'] in range_p: t0 = time.time() score = exp_mi(**args) args['time'] = int(time.time() - t0) l_scores.append( np.concatenate((list(args.values()), score))) print('exp with ', args) print('........... DONE') print('in ', int(args["time"]), ' s \n\n') score_data = pd.DataFrame(l_scores, columns=list(args.keys()) + l_tau) score_data.to_csv(output + '_temp') print('saving ' + exp_name + 'at: ' + output) score_data.to_csv(output) print('*' * 20) print('Exp: ' + exp_name + ' succesfully ended.') print('*' * 20)
l_scores = [] for args['seed'] in range_seed: for args['citcio'] in [False, True]: for args['model'] in ["dlvm", "lrmf"]: for args['n'] in range_n: for args['sig_prior'] in range_sig_prior: for args['n_epochs'] in range_n_epochs: for args['prop_miss'] in range_prop_miss: for args['p'] in range_p: t0 = time.time() score = exp_miwae(**args) args['time'] = int(time.time() - t0) l_scores.append( np.concatenate( (list(args.values()), score))) print('exp with ', args) print('........... DONE') print('in ', int(args["time"]), ' s \n\n') score_data = pd.DataFrame( l_scores, columns=list(args.keys()) + l_tau) score_data.to_csv(output + '_temp') print('saving ' + exp_name + 'at: ' + output) score_data.to_csv(output) print('*' * 20) print('Exp: ' + exp_name + ' succesfully ended.') print('*' * 20)
args['m'] = 10 print('starting exp: ' + exp_name) l_tau = ['tau_dr', 'tau_ols', 'tau_ols_ps'] output = 'results/2019-10-24_'+exp_name+'.csv' l_scores = [] for args['citcio'] in [False, True]: for args['model'] in ["dlvm","lrmf"]: for args['seed'] in range_seed: for args['prop_miss'] in range_prop_miss: for args['n'] in range_n: for args['p'] in range_p: t0 = time.time() score = exp_mi(**args) args['time'] = int(time.time() - t0) l_scores.append(np.concatenate((list(args.values()),score))) print('exp with ', args) print('........... DONE') print('in ', int(args["time"]) , ' s \n\n') score_data = pd.DataFrame(l_scores, columns=list(args.keys()) + l_tau) score_data.to_csv(output + '_temp') print('saving ' +exp_name + 'at: ' + output) score_data.to_csv(output) print('*'*20) print('Exp: '+ exp_name+' succesfully ended.') print('*'*20)
if args['model'] == "lrmf": Z, X, w, y, ps = gen_lrmf(n=args['n'], d=args['d'], p=args['p'], citcio = args['citcio'], prop_miss = args['prop_miss'], seed = args['seed']) elif args['model'] == "dlvm": Z, X, w, y, ps = gen_dlvm(n=args['n'], d=args['d'], p=args['p'], citcio = args['citcio'], prop_miss = args['prop_miss'], seed = args['seed']) X_miss = ampute(X, prop_miss = args['prop_miss'], seed = args['seed']) # Complete t0 = time.time() tau = exp_complete(Z, X, w, y) args['time'] = int(time.time() - t0) l_scores.append(np.concatenate((['Z'], list(args.values()), [None]*7, tau['Z']))) l_scores.append(np.concatenate((['X'], list(args.values()), [None]*7, tau['X']))) # Mean-imputation t0 = time.time() tau = exp_mean(X_miss, w, y) args['time'] = int(time.time() - t0) l_scores.append(np.concatenate((['Mean_imp'], list(args.values()), [None]*7, tau))) # MI tau = [] t0 = time.time() for m in range_m: tau.append(exp_mi(X_miss, w, y, m=m))