Exemplo n.º 1
0
def create_pn_kc_conn(fd, pn_vecstim_dict, kc_name_sec_dict,
                      path=pn_kc_syn_path, config=None):
    """Create PN->KC connection from dataset at specified path

    pn_vecstim_list should be a dict from pn name to corresponding
    vecstim

    kc_name_sec_dict should be a dict from kc soma section names to
    the sections themselves

    returns a dict containing kc names mapped to their synapses and a
    list of all netcons from PNs to KCs.

    """
    global model_dict
    cfg.logger.info('Started PN->KC connections')
    if config is None:
        config = {}
    syn_dict = {}
    netcons = []
    ncdict = {}
    syn_data = fd[path]
    # This is to take care of discrepancy between NSDF saving synapses
    # as dataset of dim [nx1] vs my kc removal code saving them as dim
    # [n]
    if len(syn_data.shape) == 2:
        syn_data = syn_data[:, 0]
    for ii, row in enumerate(syn_data):
        if row['post'] not in syn_dict:
            target = kc_name_sec_dict[row['post']]
            syn = h.Exp2Syn(target(row['postpos']))
            syn.e = row['e']
            syn.tau1 = row['tau1']
            syn.tau2 = row['tau2']
            syn_dict[row['post']] = syn
        else:
            syn = syn_dict[row['post']]
        vecstim = pn_vecstim_dict[row['pre']]
        if 'delay' in row.dtype.names:
            delay = row['delay']
        else:
            delay = config.get('delay', '0.0ms')
            delay = cfg.Q_(delay).to('ms').m
        thresh = -20.0            
        nc = h.NetCon(vecstim, syn, thresh, delay, row['gmax'])
        netcons.append((row['pre'], row['post'], nc))
        assert (vecstim, syn) not in ncdict
        ncdict[(vecstim, syn)] = nc
        # print(ii, nc, nc.pre(), nc.syn())
        # sys.stdout.flush()
    model_dict['pn_kc_conn'] = (netcons, syn_dict)
    cfg.logger.info('Finished PN->KC connections')
    return netcons, syn_dict
Exemplo n.º 2
0
def connect_kcs_to_ig(kcs=None, params=None):
    """Connect single compartmental KCs to IG"""
    global model_dict
    if isinstance(kcs, h5.File):  
        fd = kcs
        kc_name_sec_dict = {kc.soma.name(): kc.soma for kc in model_dict['kc']}
        threshold = -20.0
        if params is not None:
            threshold = cfg.Q_(params['threshold']).to('mV').m
        units = fd[kc_ig_syn_path].attrs['unit'][-1]
        syn_data = fd[kc_ig_syn_path]
        if len(syn_data.shape) == 2:
            syn_data = syn_data[:, 0]
        
        # for row_arr in fd[kc_ig_syn_path].value:
        #     row = row_arr[0]
        for row in syn_data:
            cfg.logger.debug('{}'.format(row))
            presec = kc_name_sec_dict[row['pre']]
            # TODO not using the unit attribute from dataset - assuming NEURON compatible units
            # ignoring 'prepos' field as KCs are single compartmental
            # - important data are weight and delay
            model_dict['ig'].connect_ampa_sec(presec, 0.5, threshold=threshold,
                                              delay=row['delay'],
                                              weight=row['gmax'])
    else: # no explicit synapse info, use constant values from config
        weight = float(params['weight'])
        if weight <= 0:
            cfg.logger.info('No connection from KCs to IG')
            return
        threshold = cfg.Q_(params['threshold']).to('mV').m
        delay = cfg.Q_(params['delay']).to('ms').m
        for kc in kcs:
            model_dict['ig'].connect_ampa_sec(kc.soma, 0.5, threshold=threshold,
                                              delay=delay, weight=weight)
    cfg.logger.info('Completed creation of synapse from KCs to IG')
Exemplo n.º 3
0
def setup_ig(fd,  ggn_name_sec_dict, config=None):
    """Skipping model structure and just create IG from config"""
    global model_dict
    if config is None:
        config = {}
    if 'ig' not in config:
        return    
    ig = IGIzhi(inject=config['ig']['inject'],
                gbarGABA=cfg.Q_(config['ggn_ig_syn']['gmax']).to('uS').m)
    ig.vmidGraded = cfg.Q_(config['ggn_ig_syn']['vmid']).to('mV').m
    ig.vslopeGraded = cfg.Q_(config['ggn_ig_syn']['vslope']).to('mV').m
    ggn =  model_dict['ggn']
    # presec = ggn_name_sec_dict[config['ggn_ig_syn']['source']]
    presec = eval('ggn.{}'.format(config['ggn_ig_syn']['source']))
    h.setpointer(presec(0.5)._ref_v, 'vpreGraded', ig.izhi)
    cfg.logger.info('Created IG with injection {}'.format(config['ig']['inject']))
    model_dict['ig'] = ig
    # post_sec = ggn_name_sec_dict[config['ig_ggn_syn']['target']]
    post_sec = eval('ggn.{}'.format(config['ig_ggn_syn']['target']))
    make_ig_ggn_syn(ig, config['ig_ggn_syn'], post_sec)
    if kc_ig_syn_path in fd:
        connect_kcs_to_ig(fd, config['kc_ig_syn'])
    else:
        connect_kcs_to_ig(model_dict['kc'],  config['kc_ig_syn'])
Exemplo n.º 4
0
def create_kc_ggn_conn(fd, kc_name_sec_dict, ggn_name_sec_dict,
                       path=kc_ggn_alphaL_syn_path, config=None):
    """Created excitatory synapses from KCs to GGN segments"""
    global model_dict
    cfg.logger.info('Started KC->GGN connection')
    if config is None:
        config = {}
    model_dict['kc_ggn_syn'] = []
    model_dict['kc_ggn_nc'] = []
    model_dict['kc_ggn_conn'] = []
    syn_dict = {}
    nc_dict = {}
    syn_data = fd[path]
    if len(syn_data.shape) == 2:
        syn_data = syn_data[:, 0]
    # for row_arr in fd[kc_ggn_alphaL_syn_path]:
        # row = row_arr[0]
    for row in syn_data:
        postsec = ggn_name_sec_dict[row['post']]
        syn = h.Exp2Syn(postsec(row['postpos']))
        syn.e = row['e']
        syn.tau1 = row['tau1']
        syn.tau2 = row['tau2']
        presec = kc_name_sec_dict[row['pre']]
        if 'delay' in row.dtype.names:
            delay = row['delay']
        else:
            delay = config.get('delay', '1.0ms')
            delay = cfg.Q_(delay).to('ms').m
        nc = h.NetCon(presec(row['prepos'])._ref_v, syn, -20.0,
                      delay, row['gmax'], sec=presec)
        syn_dict[row['pre']] = syn
        nc_dict[row['pre']] = nc
        model_dict['kc_ggn_syn'].append(syn)
        model_dict['kc_ggn_nc'].append(nc)
        model_dict['kc_ggn_conn'].append({'pre': row['pre'], 'prepos':
                                          row['prepos'], 'post':
                                          row['post'], 'postpos':
                                          row['postpos'], 'nc': nc,
                                          'syn': syn})
    cfg.logger.info('Finished KC->GGN connection')
    return syn_dict, nc_dict
Exemplo n.º 5
0
def make_ig_ggn_syn(ig, params, sec):
    # This is ugly but only once
    global model_dict
    ig_syn = h.Exp2Syn(sec(0.5))
    ig_syn.tau1 = cfg.Q_(params['tau1']).to('ms').m
    ig_syn.tau2 = cfg.Q_(params['tau2']).to('ms').m
    ig_syn.e = cfg.Q_(params['e']).to('mV').m
    ig_nc = h.NetCon(ig.izhi._ref_V, ig_syn,
                          cfg.Q_(params['threshold']).to('mV').m,
                          cfg.Q_(params['delay']).to('ms').m,
                          cfg.Q_(params['gmax']).to('uS').m,
                          sec=ig.sec)
    model_dict['ig_ggn_syn'] = ig_syn
    model_dict['ig_ggn_nc'] = ig_nc
    cfg.logger.info('Completed creation of synapse from IG to GGN')
    cfg.logger.info('tau1: {}, tau2: {}, e: {}, thresh: {}, delay: {}, gmax: {}'.format(ig_syn.tau1,
                                                                                        ig_syn.tau2,
                                                                                        ig_syn.e,
                                                                                        ig_nc.threshold,
                                                                                        ig_nc.delay,
                                                                                        ig_nc.weight[0]))
Exemplo n.º 6
0
def run_model(args):
    """setup and run a model with templates and other parameters specified
    in args (parsed arguments). List of arguments:

    template_filename: HDF5 file containing the network template and
    PN spike trains. These data should be at paths in constants
    specified at the top of this file.

    output_directory: directory to dump simulated data into.

    pn_shift: shift the assignment of spike trains to PNs by this
    amount, i.e., if pn_shift is 2, then the spike train of pn_0 is
    assigned to pn_2, and pn_{i+2} gets the spike train of pn_{i},
    with wrapping around the edge.

    pn_dither: The maximum magnitude of time shift when dithering the
    PN spike times.

    n_kc_vm: number of KCs to record Vm from

    n_ggn_vm: number of GGN sections to record Vm from for each of
    basal, calyceal and alpha lobe regions.

    recstep: number of integration steps between each recording point.

    simtime: total simulation time

    """
    global model_dict
    output_filename = os.path.join(args.output_directory,
                                   'fixed_net_UTC{}-PID{}-JID{}.h5'.format(
                                       cfg.timestamp.strftime('%Y_%m_%d__%H_%M_%S'),
                                       cfg.mypid, cfg.myjobid))
    ggn = create_ggn()
    ggn_name_sec_dict = {sec.name(): sec for sec in ggn.all}
    with h5.File(args.template_filename, 'r') as template_fd:
        config = yaml.load(template_fd.attrs['config'].decode())
        pn_spikes = load_pn_spikes(template_fd)
        pns, spike_trains = zip(*pn_spikes)
        spike_trains = dither_spiketrain(spike_trains, cell_shift=args.pn_shift,
                                         dither=args.pn_dither)
        pn_spike_vecs, vecstims = create_pn_output(spike_trains)
        kcs = create_kcs(template_fd, config=config['kc'])
        if args.test_kc >= 0:
            delay = cfg.Q_(config['stimulus']['onset'])
            if 'delay' in config['pn_kc_syn']:
                delay += cfg.Q_(config['pn_kc_syn']['delay'])
            duration = cfg.Q_(config['stimulus']['duration'])
            amplitude = cfg.Q_(args.kc_current)
            iclamp = ephys.setup_current_clamp(kcs[args.test_kc].soma,
                                               delay=delay, duration=duration, amplitude=amplitude)
            # test_kc_vvec = ephys.setup_sec_rec(kcs[args.test_kc].soma, 'v')[0] # this is added in setup recording
            model_dict['kc_iclamp'] = iclamp
            model_dict['test_kc'] = kcs[args.test_kc]
        kc_name_sec_dict = {kc.soma.name(): kc.soma for kc in kcs}
        nc_pn_kc, syn_pn_kc = create_pn_kc_conn(template_fd,
                                                dict(zip(pns, vecstims)), kc_name_sec_dict,
                                                config=config['pn_kc_syn'])
        syn_ggn_kc = create_ggn_kc_conn(template_fd, kc_name_sec_dict,
                                        ggn_name_sec_dict, config=config['ggn_kc_syn'])
        syn_kc_ggn, nc_kc_ggn = create_kc_ggn_conn(template_fd,
                                                   kc_name_sec_dict,
                                                   ggn_name_sec_dict,
                                                   config=config['kc_ggn_alphaL_syn'])
        setup_ig(template_fd, ggn_name_sec_dict, config=config)
        data = setup_recording(kcs, ggn, n_kc_vm=args.n_kc_vm,
                               n_ggn_vm=args.n_ggn_vm,
                               t=h.dt * args.recstep)
        h.tstop = args.simtime
        start = datetime.utcnow()
        h.init()
        for v in pn_spike_vecs:
            if np.any(np.array(v.x) <= 0):
                print('negative pn spike time', v)
        cfg.logger.info('Finished init. Starting simulation of {} ms'.format(
            h.tstop))
        if h.tstop > 0:
            nu.block_run(logger=cfg.logger)
        else:
            cfg.logger.info('Dry run. Skipping simulation')
        end = datetime.utcnow()
        delta = end - start
        data['tstart'] = start
        data['tend'] = end
        data['pn_spikes'] = dict(zip(pns, spike_trains))
        cfg.logger.info('Finished running simulation in {} s'.format(
            delta.days * 86400 +
            delta.seconds +
            delta.microseconds * 1e-6))
        cfg.logger.info('Starting data save in {}'.format(output_filename))
        ig_vm = model_dict.get('ig_vm',  None)
        data['ig_vm'] = ig_vm
        save(args.template_filename, output_filename, data, model_dict, args.savesyn, config)
        cfg.logger.info('Finished')