def predict(self):
        predList = glob.glob(self.config.test_img_path + "*." +
                             self.config.test_datatype)
        for path in predList:
            orgImg = plt.imread(path)
            print("[Info] 解析文件名...", self.analyze_name(path))
            height, width = orgImg.shape[:2]
            patches_pred, new_height, new_width, adjustImg = get_test_patches(
                orgImg, self.config)

            predictions = self.model.predict(patches_pred,
                                             batch_size=32,
                                             verbose=1)
            pred_patches = pred_to_patches(predictions, self.config)

            pred_imgs = recompone_overlap(pred_patches, self.config,
                                          new_height, new_width)
            pred_imgs = pred_imgs[:, 0:height, 0:width, :]

            adjustImg = adjustImg[0, 0:height, 0:width, :]
            print(adjustImg.shape)
            probResult = pred_imgs[0, :, :, 0]
            binaryResult = gray2binary(probResult)
            resultMerge = visualize([adjustImg, binaryResult], [1, 2])

            resultMerge = cv2.cvtColor(resultMerge, cv2.COLOR_RGB2BGR)

            cv2.imwrite(
                self.config.test_result_path + self.analyze_name(path) +
                "_merge.jpg", resultMerge)
            cv2.imwrite(
                self.config.test_result_path + self.analyze_name(path) +
                "_prob.jpg", (probResult * 255).astype(np.uint8))
    def predict(self):
        predList = glob.glob(self.config.test_img_path + "*." +
                             self.config.test_datatype)
        print(len(predList))
        for path in predList:
            orgImg_temp = plt.imread(path)
            #orgImg_temp=cv2.resize(orgImg_temp,(1727,1168))
            #			orgImg=orgImg_temp[:,:,1]
            thresh = 0.6
            print('G_ratio:{} R_ratio:{}'.format(thresh, (1 - thresh)))
            orgImg = orgImg_temp[:, :, 1] * thresh + orgImg_temp[:, :, 0] * (
                1 - thresh)
            print("[Info] Analyze filename...", self.analyze_name(path))
            height, width = orgImg.shape[:2]
            orgImg = np.reshape(orgImg, (height, width, 1))
            patches_pred, new_height, new_width, adjustImg = get_test_patches(
                orgImg, self.config)

            predictions = self.model.predict(patches_pred,
                                             batch_size=32,
                                             verbose=1)
            #			print(predictions.shape)
            pred_patches = pred_to_patches(predictions, self.config)

            pred_imgs = recompone_overlap(pred_patches, self.config,
                                          new_height, new_width)
            #			print(pred_imgs.shape)
            gc.collect()
            pred_imgs = pred_imgs[:, 0:height, 0:width, :]
            new_construct = np.zeros(
                (pred_imgs.shape[1], pred_imgs.shape[2], 3))
            for i in range(pred_imgs.shape[1]):
                for j in range(pred_imgs.shape[2]):
                    #			        print(pred_imgs[0][i][j])
                    index = np.argmax(pred_imgs[0][i][j])
                    #			        print(index)
                    new_construct[i][j] = color_list[index]


#			print(pred_imgs.shape)
            adjustImg = adjustImg[0, 0:height, 0:width, :]
            #			print(adjustImg.shape)

            probResult = pred_imgs[0, :, :,
                                   0] + pred_imgs[0, :, :,
                                                  2] + pred_imgs[0, :, :, 3]

            binaryResult = gray2binary(probResult, 0.35)
            resultMerge = visualize([adjustImg, binaryResult], [1, 2])

            resultMerge = cv2.cvtColor(resultMerge, cv2.COLOR_RGB2BGR)

            #cv2.imwrite(self.config.test_result_path+self.analyze_name(path)+"_merge.jpg",resultMerge)
            cv2.imwrite(
                self.config.test_result_path + self.analyze_name(path) +
                "_prob.tif", ((1 - probResult) * 255).astype(np.uint8))
            cv2.imwrite(
                self.config.test_result_path + self.analyze_name(path) +
                "_color_mask.tif", (new_construct).astype(np.uint8))
Exemplo n.º 3
0
    def predict(self):
        predList = glob.glob(self.config.test_img_path + "*." +
                             self.config.test_datatype)
        #		probList=glob.glob(self.config.test_img_path+"*."+self.config.test_datatype)
        #        print(len(predList))
        for path in predList:
            orgImg_temp = plt.imread(path)
            prob_path = self.config.test_prob_path + path.split(
                '/')[1].replace('test', 'test_prob')
            probImg = plt.imread(prob_path, 0)

            #orgImg_temp=cv2.resize(orgImg_temp,(1727,1168))
            #			orgImg=orgImg_temp[:,:,1]
            thresh = 1
            print('G_ratio:{} R_ratio:{}'.format(thresh, (1 - thresh)))
            orgImg = orgImg_temp[:, :, 1] * thresh + orgImg_temp[:, :, 0] * (
                1 - thresh)
            print("[Info] Analyze filename...", self.analyze_name(path))
            height, width = orgImg.shape[:2]
            orgImg = np.reshape(orgImg, (height, width, 1))
            probImg = np.reshape(probImg, (height, width, 1))
            patches_pred, new_height, new_width, adjustImg = get_test_patches1(
                orgImg, probImg, self.config)

            predictions = self.model.predict(patches_pred,
                                             batch_size=32,
                                             verbose=1)
            pred_patches = pred_to_patches(predictions, self.config)

            pred_imgs = recompone_overlap(pred_patches, self.config,
                                          new_height, new_width)
            gc.collect()
            pred_imgs = pred_imgs[:, 0:height, 0:width, :]

            adjustImg = adjustImg[0, 0:height, 0:width, :]
            print(adjustImg.shape)
            probResult = pred_imgs[0, :, :, 0]
            binaryResult = gray2binary(probResult, 0.35)
            resultMerge = visualize([adjustImg, binaryResult], [1, 2])

            resultMerge = cv2.cvtColor(resultMerge, cv2.COLOR_RGB2BGR)

            cv2.imwrite(
                self.config.test_result_path + self.analyze_name(path) +
                "_merge.jpg", resultMerge)
            cv2.imwrite(
                self.config.test_result_path + self.analyze_name(path) +
                "_prob.bmp", (probResult * 255).astype(np.uint8))
            cv2.imwrite(
                self.config.test_result_path +
                self.analyze_name(path).replace('training', 'manual1') +
                ".tif", (binaryResult * 255).astype(np.uint8))
Exemplo n.º 4
0
    def predict(self):
        predList = glob.glob(self.config.test_img_path + "*." +
                             self.config.test_datatype)
        print(len(predList))
        for index, path in enumerate(predList):
            orgImg_temp = plt.imread(predList[index])
            #			orgImg=orgImg_temp[:,:,1]
            thresh = 0.8
            print('G_ratio:{} R_ratio:{}'.format(thresh, (1 - thresh)))
            orgImg = orgImg_temp[:, :, 1] * thresh + orgImg_temp[:, :, 0] * (
                1 - thresh)
            print("[Info] Analyze filename...", self.analyze_name(path))
            height, width = orgImg.shape[:2]
            orgImg = np.reshape(orgImg, (height, width, 1))
            patches_pred, new_height, new_width, adjustImg = get_test_patches(
                orgImg, self.config)
            #			self.model.load_weights('./metric/STARE/weights/STARE_1_weight/keras_{}.model'.format(index))
            self.model.load_weights(
                './metric/STARE/Unetweights/0.9/keras_{}.model'.format(index))

            print("[Info] loading weight....{}".format(index))
            predictions = self.model.predict(patches_pred,
                                             batch_size=32,
                                             verbose=1)
            pred_patches = pred_to_patches(predictions, self.config)

            pred_imgs = recompone_overlap(pred_patches, self.config,
                                          new_height, new_width)
            gc.collect()
            pred_imgs = pred_imgs[:, 0:height, 0:width, :]

            adjustImg = adjustImg[0, 0:height, 0:width, :]
            print(adjustImg.shape)
            probResult = pred_imgs[0, :, :, 0]
            binaryResult = gray2binary(probResult)
            resultMerge = visualize([adjustImg, binaryResult], [1, 2])

            resultMerge = cv2.cvtColor(resultMerge, cv2.COLOR_RGB2BGR)

            cv2.imwrite(
                self.config.test_result_path + self.analyze_name(path) +
                "_merge.jpg", resultMerge)
            cv2.imwrite(
                self.config.test_result_path + self.analyze_name(path) +
                "_prob.bmp", (probResult * 255).astype(np.uint8))
            cv2.imwrite(
                self.config.test_result_path + self.analyze_name(path) +
                ".tif", (binaryResult * 255).astype(np.uint8))
            np.save(
                self.config.test_result_path + self.analyze_name(path) +
                ".npy", binaryResult)
    def predict(self):
        predList = glob.glob(self.config.test_img_path + "*." +
                             self.config.test_datatype)
        for path in predList:
            print(path)
            baseName = os.path.basename(path)
            orgImg_temp = cv2.imread(path)[..., 0]
            #orgImg=orgImg_temp[:,:,1]*0.75+orgImg_temp[:,:,0]*0.25
            orgImg = orgImg_temp
            print("[Info] Analyze filename...", self.analyze_name(path))
            height, width = orgImg.shape[:2]
            orgImg = np.reshape(orgImg, (height, width, 1))
            patches_pred, new_height, new_width, adjustImg = get_test_patches(
                orgImg, self.config)

            predictions = self.model.predict(patches_pred,
                                             batch_size=32,
                                             verbose=1)
            pred_patches = pred_to_patches(predictions, self.config)

            pred_imgs = recompone_overlap(pred_patches, self.config,
                                          new_height, new_width)
            pred_imgs = pred_imgs[:, 0:height, 0:width, :]

            adjustImg = adjustImg[0, 0:height, 0:width, :]
            print(adjustImg.shape)
            probResult = pred_imgs[0, :, :, 0]
            binaryResult = gray2binary(probResult)
            resultMerge = visualize([adjustImg, binaryResult], [1, 2])

            resultMerge = cv2.cvtColor(resultMerge, cv2.COLOR_RGB2BGR)
            test_path = os.path.join(self.config.test_result_path,
                                     self.analyze_name(path),
                                     self.config.exp_name,
                                     self.config.preprocess,
                                     self.config.dataset, 'result')
            #test_label = os.path.join(self.config.test_result_path, self.analyze_name(path), self.config.exp_name, self.config.preprocess, self.config.dataset, 'labels')
            mkdir_if_not_exist(test_path)
            #mkdir_if_not_exist(test_label)

            #cv2.imwrite(self.config.test_result_path+self.analyze_name(path)+"test.png", orgImg)
            #cv2.imwrite(self.config.test_result_path+self.analyze_name(path)+"_merge.png",resultMerge)
            cv2.imwrite(os.path.join(test_path, baseName),
                        (probResult * 255).astype(np.uint8))
    def predict(self):
        predList = glob.glob(self.config.test_img_path + "*." +
                             self.config.test_datatype)
        for path in predList:
            orgImg_temp = plt.imread(path)
            if orgImg_temp.shape[0] > 1000 or orgImg_temp.shape[1] > 1000:
                orgImg_temp = imgResize(orgImg_temp, 0.5)
            orgImg = orgImg_temp[:, :, 1] * 0.75 + orgImg_temp[:, :, 0] * 0.25
            print("[Info] Analyze filename...", self.analyze_name(path))
            height, width = orgImg.shape[:2]
            orgImg = np.reshape(orgImg, (height, width, 1))
            patches_pred, new_height, new_width, adjustImg = get_test_patches(
                orgImg, self.config)

            predictions = self.model.predict(patches_pred,
                                             batch_size=32,
                                             verbose=1)
            pred_patches = pred_to_patches(predictions, self.config)

            pred_imgs = recompone_overlap(pred_patches, self.config,
                                          new_height, new_width)
            pred_imgs = pred_imgs[:, 0:height, 0:width, :]

            probResult = pred_imgs[0, :, :, 0]
            binaryResult = gray2binary(probResult, threshold=0.5)

            binaryResult, probResult = postprocess(
                binaryResult, probResult)  # post process to get the optic disc

            _, contours, _ = cv2.findContours(binaryResult, cv2.RETR_TREE,
                                              cv2.CHAIN_APPROX_SIMPLE)
            adjustImg = cv2.drawContours(orgImg_temp, contours, -1,
                                         (0, 255, 0), 2)

            resultMerge = visualize([adjustImg / 255., binaryResult], [1, 2])
            resultMerge = cv2.cvtColor(resultMerge, cv2.COLOR_RGB2BGR)

            cv2.imwrite(
                self.config.test_result_path + self.analyze_name(path) +
                "_merge.jpg", resultMerge)
            cv2.imwrite(
                self.config.test_result_path + self.analyze_name(path) +
                "_prob.bmp", (probResult * 255).astype(np.uint8))
    def predict(self):
        predList = glob.glob(self.config.test_img_path + "*." +
                             self.config.test_datatype)
        print(predList)
        for path in predList:
            orgImg_temp = plt.imread(path)
            # img = Image.open(path)
            # img = img.resize((370, 250))
            # orgImg_temp = np.asarray(img)
            orgImg = orgImg_temp[:, :, 1] * 0.75 + orgImg_temp[:, :, 0] * 0.25
            print("[Info] Analyze filename...", self.analyze_name(path))
            height, width = orgImg.shape[:2]
            orgImg = np.reshape(orgImg, (height, width, 1))
            patches_pred, new_height, new_width, adjustImg = get_test_patches(
                orgImg, self.config)

            predictions = self.model.predict(patches_pred,
                                             batch_size=32,
                                             verbose=1)
            pred_patches = pred_to_patches(predictions, self.config)

            pred_imgs = recompone_overlap(pred_patches, self.config,
                                          new_height, new_width)
            pred_imgs = pred_imgs[:, 0:height, 0:width, :]

            adjustImg = adjustImg[0, 0:height, 0:width, :]
            print(adjustImg.shape)
            probResult = pred_imgs[0, :, :, 0]
            binaryResult = gray2binary(probResult)
            resultMerge = visualize([adjustImg, binaryResult], [1, 2])

            resultMerge = cv2.cvtColor(resultMerge, cv2.COLOR_RGB2BGR)

            cv2.imwrite(
                self.config.test_result_path + self.analyze_name(path) +
                "_merge.jpg", resultMerge)
            cv2.imwrite(
                self.config.test_result_path + self.analyze_name(path) +
                "_prob.bmp", (probResult * 255).astype(np.uint8))