Exemplo n.º 1
0
        def convgru_forward(x, CGRU):
            len_r = len(reset_group)
            if len_r > 0:
                yyy = []
                if reset_group[0][0] > 0:
                    temp_x = x[0:reset_group[0][0]]
                    xx = temp_x.view(-1, temp_x.size(0), temp_x.size(1),
                                     temp_x.size(2), temp_x.size(3))
                    xxx = CGRU(xx)
                    yyy.append(xxx[1])

                for item in reset_group:
                    temp_x = x[item[0]:item[1]]
                    xx = temp_x.view(-1, temp_x.size(0), temp_x.size(1),
                                     temp_x.size(2), temp_x.size(3))
                    xxx = CGRU(xx)
                    yyy.append(xxx[1])

                yyy = torch.cat(yyy, 0)
                yyy = F.relu(yyy, inplace=True)
                x = yyy.view(x.size())
                return x
            else:
                xx = x.view(-1, x.size(0), x.size(1), x.size(2), x.size(3))
                xxx = CGRU(xx)
                yyy = xxx[1]
                yyyy = F.relu(yyy, inplace=True)
                x = yyyy.view(x.size())
                return x
Exemplo n.º 2
0
        def convgru_forward(x, CGRU, hidden_states, hi):
            len_r = len(reset_group)
            if len_r > 0:
                yyy = []
                if reset_group[0][0] > 0:
                    temp_x = x[0:reset_group[0][0]]
                    xx = temp_x.view(-1, temp_x.size(0), temp_x.size(1),
                                     temp_x.size(2), temp_x.size(3))
                    len_hid = len(hidden_states[hi])
                    if len_hid > 0:
                        temp = [(Variable(hidden_states[hi]).cuda())]
                        xxx = CGRU(xx, temp)
                    else:
                        xxx = CGRU(xx)
                    hidden_states[hi] = xxx[0][0].data
                    yyy.append(xxx[1].data)

                for item in reset_group:
                    hidden_states[hi] = []
                    temp_x = x[item[0]:item[1]]
                    xx = temp_x.view(-1, temp_x.size(0), temp_x.size(1),
                                     temp_x.size(2), temp_x.size(3))
                    xxx = CGRU(xx)
                    hidden_states[hi] = xxx[0][0].data
                    yyy.append(xxx[1].data)

                third_tensor = yyy[0]
                if len(yyy) > 1:
                    for yitem in yyy[1:]:
                        third_tensor = torch.cat((third_tensor, yitem), 0)

                yyyy = Variable(third_tensor).cuda()
                yyyy = F.relu(yyyy, inplace=True)
                x = yyyy.view(x.size())
                return x
            else:
                xx = x.view(-1, x.size(0), x.size(1), x.size(2), x.size(3))
                len_hid = len(hidden_states[hi])
                if len_hid > 0:
                    temp = [(Variable(hidden_states[hi]).cuda())]
                    xxx = CGRU(xx, temp)
                else:
                    xxx = CGRU(xx)

                yyy = xxx[1]
                hidden_states[hi] = xxx[0][0].data

                yyyy = F.relu(yyy, inplace=True)
                x = yyyy.view(x.size())
                return x
Exemplo n.º 3
0
    def __init__(self, base, extras, head, num_classes, use_gru = False):
        super(SSD, self).__init__()

        self.num_classes = num_classes
        # TODO: implement __call__ in PriorBox
        self.priorbox = PriorBox(v2)
        self.priors = Variable(self.priorbox.forward(), volatile=True)
        self.num_priors = self.priors.size(0)
        self.size = 300

        self.hidden_states = [[]]
        # SSD network
        self.vgg = nn.ModuleList(base)
        clstm = [CLSTM(512, 512, 3, 1)]
        cgru = [CGRU(512, 512, 3, 1)]

        self.clstm = nn.ModuleList(clstm)
        self.use_gru = use_gru
        if self.use_gru:
            self.cgru = nn.ModuleList(cgru)
            print ("ConvGRU is used")
        else:
            print("ConvLSTM is used")

        # if self.use_gru:
        #     self.hidden_states = []

        # Layer learns to scale the l2 normalized features from conv4_3
        self.L2Norm = L2Norm(512, 20)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])

        self.softmax = nn.Softmax().cuda()
Exemplo n.º 4
0
def multibox(vgg, extra_layers, cfg, num_classes):
    loc_layers = []
    conf_layers = []
    vgg_source = [24, -2]
    for k, v in enumerate(vgg_source):
        loc_layers += [
            nn.Conv2d(vgg[v].out_channels,
                      cfg[k] * 4,
                      kernel_size=3,
                      padding=1)
        ]

        conf_layers += [
            nn.Conv2d(vgg[v].out_channels,
                      cfg[k] * num_classes,
                      kernel_size=3,
                      padding=1)
        ]

    for k, v in enumerate(extra_layers[1::2], 2):
        loc_layers += [
            nn.Conv2d(v.out_channels, cfg[k] * 4, kernel_size=3, padding=1)
        ]
        conf_layers += [
            nn.Conv2d(v.out_channels,
                      cfg[k] * num_classes,
                      kernel_size=3,
                      padding=1)
        ]

    clstm = [CLSTM(512, 512, 3, 1)]
    cgru = [CGRU(512, 512, 3, 1)]

    return vgg, extra_layers, clstm, cgru, (loc_layers, conf_layers)