def write(infile, ftype, indata, ck=False): """ :param infile: Path to input file. :type infile: str :param ftype: One of 'psicov', 'ccmpred', 'fasta', 'pdb', 'a3m', 'jones', 'xml'. :type ftype: str :param ck: Open alternative conkit version instead of default, defaults to False. :type ck: bool, optional :return: Parsed file (and, for 'pdb', list of filenames). :rtype: One or two of list[str], :class:`~crops.elements.sequences.sequence`, :class:`~conkit.core.sequence.Sequence`, """ if (ftype.lower() not in _ftypelist() or isinstance(ftype, str) is not True): logging.critical('Specified type not valid.') raise ValueError if ck is True and ftype.lower() != 'xml': output = ckio.write(infile, ftype.lower(), hyerarchy=indata) else: if ftype.lower() == 'psicov': pass if ftype.lower() == 'ccmpred': pass elif ftype.lower() == 'fasta': output = cps.parseseqfile(infile) elif ftype.lower() == 'pdb': output1, output2 = cps.parsestrfile(infile) return output1, output2 elif ftype.lower() == 'a3m' or 'jones': output = ckio.read(infile, ftype.lower()) elif ftype.lower() == 'xml': output = ET.parse(infile) return output
def msafilesgen(inpath_a3m): """ Convert a3m format alignment to "jones" format (.aln) and print msa coverage graph Parameters ---------- inpath_a3m : str Multiple Sequence Alignment (.a3m) path Returns ------- parsemsa : msa ConKit parsed MSA. outpath_aln : str MSA (jones format) file path. """ outpath_aln = os.path.join(os.path.splitext(inpath_a3m)[0] + ".aln") biotag = os.path.splitext(os.path.splitext(inpath_a3m)[0])[1] msacoveragefile = pdbid( ) + biotag + ".msa.coverage.png" if biotag == ".bio" else pdbid( ) + ".msa.coverage.png" msacoveragepath = os.path.join(output_dir(), msacoveragefile) parsemsa = ckio.read(inpath_a3m, 'a3m') ckio.write(outpath_aln, 'jones', parsemsa) ckplot.SequenceCoverageFigure(parsemsa, file_name=msacoveragepath) return parsemsa, outpath_aln
def _compute_single(args): decoy, decoy_format, cmap = args dmap = read(decoy, decoy_format).top_map matched = cmap.match(dmap) shortrange = matched.short_range_contacts mediumrange = matched.medium_range_contacts longrange = matched.long_range_contacts sprec, mprec, lprec = float("NaN"), float("NaN"), float("NaN") if shortrange.ncontacts > 0: sprec = shortrange.precision if mediumrange.ncontacts > 0: mprec = mediumrange.precision if longrange.ncontacts > 0: lprec = longrange.precision return sprec, mprec, lprec
def msafilesgen(inpath_a3m): """Convert a3m format alignment to "jones" format (.aln) and print msa coverage graph. :param inpath_a3m: Multiple Sequence Alignment (.a3m) path :type inpath_a3m: str :return: ConKit parsed MSA :rtype: :obj:`~conkit.core.sequencefile.SequenceFile` """ parsedmsa = ckio.read(inpath_a3m, 'a3m') # Convert to 'jones' format outpath_aln = os.path.join(os.path.splitext(inpath_a3m)[0], ".aln") ckio.write(outpath_aln, 'jones', parsedmsa) # Plot Coverage msacoveragepath = os.path.join( os.path.splitext(inpath_a3m)[0], ".coverage.png") fig = ckplot.SequenceCoverageFigure(parsedmsa) fig.savefig(msacoveragepath, overwrite=True) neff = parsedmsa.meff return neff
def main(): starttime = time.time() parser = create_argument_parser() args = parser.parse_args() global logger logger = pcl.pisacov_logger(level="info") logger.info(pcl.welcome()) # READ INPUT ARGUMENTS if args.initialise is not None: inseq = pio.check_path(args.initialise[0], 'file') instr = pio.check_path(args.initialise[1], 'file') indb = pio.check_path(pio.conf.CSV_CHAIN_PATH, 'file') skipexec = [False, True] if not args.add_noncropped else [False, False] scoring = [True, False] if not args.add_noncropped else [True, True] elif args.skip_conpred is not None: inseq = pio.check_path(args.skip_conpred[0], 'file') instr = pio.check_path(args.skip_conpred[1], 'file') skipexec = [True, True] scoring = [True, False] if not args.add_noncropped else [True, True] elif args.skip_default_conpred is not None: inseq = pio.check_path(args.skip_default_conpred[0], 'file') instr = pio.check_path(args.skip_default_conpred[1], 'file') skipexec = [True, True] if not args.add_noncropped else [True, False] scoring = [True, False] if not args.add_noncropped else [True, True] if args.outdir is None: outrootdir = pio.check_path(os.path.dirname(inseq)) else: outrootdir = pio.check_path(os.path.join(args.outdir[0], '')) pio.mdir(outrootdir) if args.collection_file is None: outcsvfile = pio.check_path( os.path.join(outrootdir, "pisacov_data.csv")) else: outcsvfile = pio.check_path(args.collection_file[0]) try: pio.check_path(outcsvfile, 'file') csvexists = True except: csvexists = False if args.uniprot_threshold is not None: thuprot, dbuprot = pio.check_uniprot(args.uniprot_threshold[0]) else: thuprot = 0.0 dbuprot = None if args.hhparams is not None: hhparameters = pio.check_hhparams(args.hhparams) else: try: hhparameters = pio.check_hhparams(pio.conf.HHBLITS_PARAMETERS) except: hhparameters = pio.check_hhparams('dmp') # Define formats used sources = pio.paths.sources() n_sources = len(sources) # Parse sequence and structure files logger.info('Parsing sequence file...') seq = cps.parseseqfile(inseq) if len(seq) == 1: for key in seq.keys(): pdbid = key.lower() if len(seq[key].imer) == 1: for key2 in seq[key].imer[key2]: chid = key2 else: raise Exception('More than one pdbid in sequence set.') else: raise Exception('More than one pdbid in sequence set.') logger.info('Parsing structure file...') structure = cps.parsestrfile(instr)[0][pdbid] #logger.info('Parsing SIFTS database file...') #sifts = cps.import_db(indb, pdb_in=pdbid) # CROPPING AND RENUMBERING if not skipexec[0]: logger.info( 'Cropping and renumbering sequences, structures according to SIFTS database.' ) psys.crops.runcrops(inseq, instr, indb, thuprot, dbuprot, outrootdir) outpdbdir = os.path.join(outrootdir, pdbid, "") pio.mdir(outpdbdir) inseqc = os.path.join(outpdbdir, os.path.basename(inseq)) instrc = os.path.join(outpdbdir, os.path.basename(instr)) copyfile(inseq, inseqc) copyfile(instr, instrc) cmappath = os.path.join(os.path.splitext(inseqc), '.cropmap') # MSA GENERATOR cseqpath = os.path.join(outpdbdir, pdbid + '.crops.to_uniprot.fasta') hhdir = os.path.join(outpdbdir, 'hhblits', '') pio.mdir(hhdir) neff = {} if not skipexec[0] or not skipexec[1]: if hhparameters == ['3', '0.001', 'inf', '50', '99']: logger.info( 'Generating Multiple Sequence Alignment using DeepMetaPSICOV default parameters... [AS RECOMMENDED]' ) elif hhparameters == ['2', '0.001', '1000', '0', '90']: logger.info( 'Generating Multiple Sequence Alignment using HHBlits default parameters...' ) else: logger.info( 'Generating Multiple Sequence Alignment using user-custom parameters...' ) if os.path.isfile(cmappath) and not skipexec[0]: psys.msagen.runhhblits(cseqpath, hhparameters, hhdir) cmsaa3mfile = os.path.splitext( os.path.basename(cseqpath))[0] + ".msa.a3m" cmsaa3mpath = os.path.join(hhdir, cmsaa3mfile) neff['cropped'] = psys.msagen.msafilesgen(cmsaa3mpath) neff['original'] = None if not skipexec[1]: logger.info( ' Repeating process for non-default sequence...') neff['cropped'] = None else: logger.info( ' No cropped sequence found, using original sequence instead...' ) if not os.path.isfile(cmappath) or not skipexec[1]: psys.msagen.runhhblits(inseq, hhparameters, hhdir) msaa3mfile = os.path.splitext( os.path.basename(inseq))[0] + ".msa.a3m" msaa3mpath = os.path.join(hhdir, msaa3mfile) neff['original'] = psys.msagen.msafilesgen(msaa3mpath) # DEEP META PSICOV RUN if not skipexec[0] or not skipexec[1]: logger.info( 'Generating contact prediction lists via DeepMetaPSICOV...') dmpdir = os.path.join(outpdbdir, 'dmp', '') pio.mdir(dmpdir) if os.path.isfile(cmappath) and not skipexec[0]: psys.dmp.rundmp(cseqpath, cmsaa3mpath, dmpdir) if not skipexec[1]: logger.info( ' Repeating process for non-default sequence...') else: logger.info( ' No cropped sequence found, using original sequence instead...' ) if not os.path.isfile(cmappath) or not skipexec[1]: psys.dmp.rundmp(inseq, msaa3mpath, dmpdir) # INTERFACE GENERATION, PISA cstrpath = os.path.join(outpdbdir, pdbid + '.oldids.crops.to_uniprot.pdb') pisadir = os.path.join(outpdbdir, 'pisa', '') n_ifaces = {} if not skipexec[0] or not skipexec[1]: logger.info('Generating interface files via PISA...') if os.path.isfile(cmappath) and not skipexec[0]: n_ifaces['cropped'] = psys.pisa.runpisa(cstrpath, pisadir) if not skipexec[1]: logger.info( ' Repeating process for non-default sequence...') else: n_ifaces['cropped'] = None logger.info( ' No cropped sequence found, using original sequence instead...' ) if not os.path.isfile(cmappath) or not skipexec[1]: n_ifaces['original'] = psys.pisa.runpisa(instr, pisadir) else: n_ifaces['original'] = None # CONTACT ANALYSIS AND MATCH resultdir = os.path.join(outpdbdir, 'results', '') logger.info('Opening output csv files...') pdbcsvfile = os.path.join(resultdir, pdbid + ".evcovsignal.csv") pio.outcsv.csvheader(pdbcsvfile) if not csvexists: pio.outcsv.csvheader(outcsvfile) logger.info('Parsing contact predictions lists...') ckseq = ckio.read(inseq, 'fasta') conpred = {} for source, attribs in sources.items(): for mode in ['cropped', 'original']: seqfile = cseqpath if mode == 'cropped' else inseq confile = (os.path.splitext(os.path.basename(seqfile))[0] + attribs[1]) conpath = os.path.join(outpdbdir, attribs[0], confile) cropmapping = cps.parsemapfile(cmappath) if os.path.isfile(conpath): conpred[mode][source] = ckio.read(conpath, attribs[2])[0] for contact in conpred[mode][source]: contact.res1_seq = cropmapping[pdbid][chid]['cropbackmap'][ contact.res1_seq] contact.res2_seq = cropmapping[pdbid][chid]['cropbackmap'][ contact.res2_seq] else: conpred[mode][source] = None # NOT SURE IT IS WORKING WITH SEVERAL CHAINS OF SAME SEQUENCE. CHECK EVERYTHING. logger.info(' Parsing PISA interfaces...') interfaces = {} for mode in ['cropped', 'original']: if n_ifaces[mode] is not None: interfaces[mode] = [] for i in range(int(n_ifaces[mode])): strfile = cstrpath if mode == 'cropped' else instr pdbfilei = os.path.splitext(strfile)[0] + ".interface." + str( i + 1) + ".pdb" interfaces[mode].append(ckio.read(pdbfilei, 'pdb')) else: interfaces[mode] = None # OUTPUT # CODE TO PRINT NON-REPEATED LINES # import csv # rows = csv.reader(open("file.csv", "rb")) # newrows = [] # for row in rows: # if row not in newrows: # newrows.append(row) # writer = csv.writer(open("file.csv", "wb")) # writer.writerows(newrows) return
def main(): starttime = time.time() parser = create_argument_parser() args = parser.parse_args() global logger logger = pcl.pisacov_logger(level="info") welcomemsg, starttime = pcl.welcome(command=__script__) logger.info(welcomemsg) # PARSE CONFIGURATION FILE: invals = pco._initialise_inputs() invals['INSEQ'] = None invals['INIFS'] = None invals['OUTROOT'] = None invals['OUTCSVPATH'] = None # READ INPUT ARGUMENTS invals['INSEQ'] == ppaths.check_path(args.seqpath[0], 'file') invals['INIFS'] = [] args.remove_insertions = False for fp in args.dimers: if '*' in fp: invals['INIFS'] += ppaths.check_wildcard(fp) else: invals['INIFS'].append(ppaths.check_path(fp, 'file')) invals['INIFS'] = list(dict.fromkeys(invals['INIFS'])) if args.hhblits_arguments is not None: invals['HHBLITS_PARAMETERS'] = pco._check_hhparams( args.hhblits_arguments) else: pass if args.skip_conpred is True: skipexec = True if args.hhblits_arguments is not None: logger.info('HHblits parameters given bypassed by --skip_conpred') else: skipexec = False if args.outdir is None: invals['OUTROOT'] = ppaths.check_path(os.path.dirname(invals['INSEQ'])) else: invals['OUTROOT'] = ppaths.check_path(os.path.join(args.outdir[0], '')) ppaths.mdir(invals['OUTROOT']) if args.collection_file is None: invals['OUTCSVPATH'] = ppaths.check_path( os.path.join(invals['OUTROOT'], ("evcovsignal" + os.extsep + "full" + os.extsep + "pisacov" + os.extsep + "csv"))) else: invals['OUTCSVPATH'] = ppaths.check_path(args.collection_file[0]) if os.path.isfile(invals['OUTCSVPATH']) is False: pic.csvheader(invals['OUTCSVPATH'], cropped=False) # Define formats used sources = pco._sources() # Parse sequence and structure files logger.info('Parsing sequence file...') seqs = cps.parseseqfile(invals['INSEQ']) if len(seqs) == 1: if len(seqs) == 1: for key in seqs: pdbid = key.lower() else: raise Exception('More than one pdbid in sequence set.') seq = seqs[pdbid] outpdbdir = os.path.join(invals['OUTROOT'], pdbid, "") # RENUMBERING fseq = {} fmsa = {} if skipexec is False: if invals['INIFS'] is not None: logger.info('Renumbering interfaces provided ' + 'according to position in sequence.') for path in invals['INIFS']: instrc = os.path.join(invals['OUTROOT'], pdbid, os.path.basename(path)) logger.info(pcl.running('CROPS-renumber')) itime = datetime.datetime.now() psc.renumcrops(invals['INSEQ'], path, invals['OUTROOT']) copyfile(path, instrc) logger.info(pcl.running('CROPS-renumber', done=itime)) ppaths.mdir(outpdbdir) for i, iseq in seq.imer.items(): fiseq = pdbid + '_' + i + os.extsep + 'fasta' fseq[i] = os.path.join(invals['OUTROOT'], pdbid, fiseq) fiseq = pdbid + '_' + i + os.extsep + 'msa' + os.extsep + 'aln' fmsa[i] = os.path.join(invals['OUTROOT'], pdbid, 'hhblits', fiseq) if skipexec is False: iseq.dump(fseq[i]) # EXECUTION OF EXTERNAL PROGRAMS hhdir = os.path.join(invals['OUTROOT'], pdbid, 'hhblits', '') dmpdir = os.path.join(invals['OUTROOT'], pdbid, 'dmp', '') fstr = [] for file in invals['INIFS']: fstr.append( os.path.join( invals['OUTROOT'], (os.path.splitext(os.path.basename(file))[0] + os.extsep + 'crops' + os.extsep + 'seq' + os.extsep + 'pdb'))) if skipexec is False: # MSA GENERATOR ppaths.mdir(hhdir) if invals['HHBLITS_PARAMETERS'] == ['3', '0.001', 'inf', '50', '99']: logger.info( 'Generating Multiple Sequence Alignment using DeepMetaPSICOV default parameters... [AS RECOMMENDED]' ) elif invals['HHBLITS_PARAMETERS'] == ['2', '0.001', '1000', '0', '90']: logger.info( 'Generating Multiple Sequence Alignment using HHBlits default parameters...' ) else: logger.info( 'Generating Multiple Sequence Alignment using user-custom parameters...' ) for i, iseq in seq.imer.items(): sfile = fseq[i] afile = fmsa[i] logger.info(pcl.running('HHBlits')) itime = datetime.datetime.now() themsa = psm.runhhblits(sfile, invals['HHBLITS_PARAMETERS'], hhdir) logger.info(pcl.running('HHBlits', done=itime)) iseq.msa = themsa # DEEP META PSICOV RUN logger.info( 'Generating contact prediction lists via DeepMetaPSICOV...') ppaths.mdir(dmpdir) for i, iseq in seq.imer.items(): sfile = fseq[i] afile = fmsa[i] nsfile = os.path.join(dmpdir, os.path.basename(sfile)) if sfile != nsfile: copyfile(sfile, nsfile) logger.info(pcl.running('DeepMetaPSICOV')) itime = datetime.datetime.now() psd.rundmp(nsfile, afile, dmpdir) logger.info(pcl.running('DeepMetaPSICOV', done=itime)) # GENERATE INTERFACE LIST iflist = [] for filepath in fstr: ifname = os.path.splitext(os.path.basename(filepath))[0] iflist.append(pci.interface(name=ifname)) # CONTACT ANALYSIS AND MATCH logger.info('Opening output csv files...') resultdir = os.path.join(invals['OUTROOT'], pdbid, 'pisacov', '') ppaths.mdir(resultdir) csvfile = os.path.join( resultdir, (pdbid + os.extsep + "evcovsignal" + os.extsep + "full" + os.extsep + "pisacov" + os.extsep + "csv")) pic.csvheader(csvfile, cropped=False, pisascore=False) logger.info('Parsing sequence files...') for i, fpath in fseq.items(): seq.imer[i].seqs['conkit'] = ckio.read(fpath, 'fasta')[0] seq.imer[i].biotype = csq.guess_type(seq.imer[i].seqs['mainseq']) logger.info('Parsing contact predictions lists...') conpred = {} matches = [] for s in seq.imer: if s not in conpred: conpred[s] = {} for source, attribs in sources.items(): fc = os.path.splitext(os.path.basename(fseq[s]))[0] fc += attribs[1] confile = os.path.join(invals['OUTROOT'], pdbid, attribs[0], fc) conpred[s][source] = ckio.read(confile, attribs[2])[0] logger.info('Parsing crystal structure contacts...') for i in range(len(iflist)): inputmap = ckio.read(fstr[i], 'pdb') if len(inputmap) == 4: chnames = list(iflist[i].chains.keys()) chtypes = list(iflist[i].chains.values()) if (seq.whatseq(chnames[0]) != seq.whatseq(chnames[1]) or (chtypes[0] != 'Protein' or chtypes[1] != 'Protein')): if chtypes[0] != "Protein" or chtypes[1] != "Protein": logger.info( 'Interface ' + str(i) + ' is not a Protein-Protein interface. Ignoring.') else: logger.info('Interface ' + str(i) + ' is not a homodimer. Ignoring.') iflist[i].structure = None matches.append(None) continue s = seq.whatseq(chnames[0]) try: iflist[i].structure = [] for m in range(len(inputmap)): iflist[i].structure.append(inputmap[m].as_contactmap()) iflist[i].structure[m].id = inputmap[m].id except Exception: for m in range(len(inputmap)): iflist[i].structure.append(inputmap[m]) # ConKit LEGACY. matches.append({}) for source, attribs in sources.items(): matches[i][source] = pcc.contact_atlas( name=pdbid + '_' + str(s), conpredmap=conpred[s][source], strmap=iflist[i].structure, sequence=seq.imer[s], removeintra=True) else: iflist[i].structure = None matches.append(None) continue logger.info('Computing results and writing them to file...') for i in range(len(iflist)): if matches[i] is None: continue results = [pdbid, str(i + 1)] results.append(matches[i]['psicov'].chain1) results.append(matches[i]['psicov'].chain2) sid = seq.whatseq(matches[i]['psicov'].chain1) results.append(str(sid)) results.append(str(seq.imer[sid].length())) results.append(str(seq.imer[sid].cropmsa.meff)) results.append(str(seq.imer[sid].ncrops())) results.append(str(seq.imer[sid].full_length())) for source, attribs in sources.items(): appresults = pcs.list_scores(matches[i][source], tag=source) results += appresults pic.lineout(results, csvfile) pic.lineout(results, invals['OUTCSVPATH']) endmsg = pcl.ok(starttime, command=__script__) logger.info(endmsg) return
def main(): parser = create_argument_parser() args = parser.parse_args() global logger logger = pcl.pisacov_logger(level="info") welcomemsg, starttime = pcl.welcome(command=__script__) logger.info(welcomemsg) # PARSE CONFIGURATION FILE: invals = pco._initialise_inputs() invals['INSEQ'] = None invals['INSTR'] = None invals['ALTDB'] = None invals['OUTROOT'] = None invals['OUTCSVPATH'] = None invals['UPTHRESHOLD'] = None # READ INPUT ARGUMENTS invals['INSEQ'] = ppaths.check_path(args.seqpath[0], 'file') invals['INSTR'] = ppaths.check_path(args.crystalpath[0], 'file') if args.hhblits_arguments is not None: invals['HHBLITS_PARAMETERS'] = pco._check_hhparams( args.hhblits_arguments) else: pass if args.uniprot_threshold is not None: try: invals['UPTHRESHOLD'] = float(args.uniprot_threshold[0]) except ValueError: logger.critical('Uniprot threshold given not valid.') if invals['UNICLUST_FASTA_PATH'] is None: invals['UNICLUST_FASTA_PATH'] = pco._uniurl else: pass if args.skip_conpred is True: skipexec = True if (args.hhblits_arguments is not None or args.uniprot_threshold is not None): logger.info( 'HHblits, UniProt threshold parameters given bypassed by --skip_conpred' ) else: skipexec = False cropping = args.remove_insertions scoring = [cropping, not cropping] if args.outdir is None: invals['OUTROOT'] = ppaths.check_path(os.path.dirname(invals['INSEQ'])) else: invals['OUTROOT'] = ppaths.check_path(os.path.join(args.outdir[0], '')) ppaths.mdir(invals['OUTROOT']) invals['OUTCSVPATH'] = [] if args.collection_file is None: invals['OUTCSVPATH'].append( ppaths.check_path( os.path.join(invals['OUTROOT'], ("evcovsignal" + os.extsep + "cropped" + os.extsep + "pisacov" + os.extsep + "csv")))) invals['OUTCSVPATH'].append( ppaths.check_path( os.path.join(invals['OUTROOT'], ("evcovsignal" + os.extsep + "full" + os.extsep + "pisacov" + os.extsep + "csv")))) else: if cropping is True: invals['OUTCSVPATH'].append( ppaths.check_path(args.collection_file[0])) invals['OUTCSVPATH'].append( ppaths.check_path( os.path.splitext(args.collection_file[0])[0] + os.extsep + 'full' + os.extsep + os.path.splitext(args.collection_file[0])[1])) else: invals['OUTCSVPATH'].append(None) invals['OUTCSVPATH'].append( ppaths.check_path(args.collection_file[0])) if args.plot_formats is None: plotformats = {'png'} else: plotformats = set() for element in args.plot_formats: if element.lower() in {'png', 'eps', 'dat'}: plotformats.add(element.lower()) # Define formats used sources = pco._sources() # Parse sequence and structure files logger.info('Parsing sequence file...') # seqs = cps.parseseqfile(invals['INSEQ']) seqs = pio.read(invals['INSEQ'], 'fasta') logger.info('Parsing structure file...') # strs, filestrs = cps.parsestrfile(invals['INSTR']) strs, filestrs = pio.read(invals['INSTR'], 'pdb') if len(seqs) == 1 or len(strs) == 1: if len(seqs) == 1: for key in seqs: pdbid = key elif len(seqs) > 1 and len(strs) == 1: for key in strs: for key2 in seqs: if key.upper() == key2.upper(): pdbid = key.upper() else: if key2.upper() in key.upper(): pdbid = key2.upper() else: raise Exception( 'More than one pdbid in sequence and/or structure set.') seq = seqs[pdbid] #structure = strs[pdbid] # CROPPING AND RENUMBERING outpdbdir = os.path.join(invals['OUTROOT'], pdbid, "") instrc = os.path.join(invals['OUTROOT'], pdbid, os.path.basename(invals['INSTR'])) fseq = {} fmsa = {} if skipexec is False: if cropping is True: logger.info('Cropping and renumbering sequences, ' + 'structures according to SIFTS database.') logger.info(pcl.running('CROPS-cropstr')) itime = datetime.datetime.now() psc.runcrops(invals['INSEQ'], invals['INSTR'], invals['SIFTS_PATH'], invals['UPTHRESHOLD'], invals['UNICLUST_FASTA_PATH'], invals['OUTROOT']) logger.info(pcl.running('CROPS-cropstr', done=itime)) else: logger.info('Renumbering structure ' + 'according to position in sequence.') logger.info(pcl.running('CROPS-renumber')) itime = datetime.datetime.now() psc.renumcrops(invals['INSEQ'], invals['INSTR'], invals['OUTROOT']) logger.info(pcl.running('CROPS-renumber', done=itime)) ppaths.mdir(outpdbdir) copyfile(invals['INSTR'], instrc) for i, iseq in seq.imer.items(): fiseq = pdbid + '_' + i + '.fasta' fseq[i] = os.path.join(invals['OUTROOT'], pdbid, fiseq) fiseq = pdbid + '_' + i + '.msa.aln' fmsa[i] = os.path.join(invals['OUTROOT'], pdbid, 'hhblits', fiseq) if skipexec is False: iseq.dump(fseq[i]) # Parse cropped sequences and maps if cropping is True: amap = {} fcropseq = {} fcropmsa = {} for i, iseq in seq.imer.items(): fprefix = pdbid + '_' + i + '.crops.to_uniprot' fmap = os.path.join(invals['OUTROOT'], pdbid, fprefix + os.extsep + 'cropmap') amap.update(cps.parsemapfile(fmap)[pdbid]) fcropseq[i] = os.path.join(invals['OUTROOT'], pdbid, fprefix + os.extsep + 'fasta') fcropmsa[i] = os.path.join( invals['OUTROOT'], pdbid, 'hhblits', (fprefix + os.extsep + 'msa' + os.extsep + 'aln')) seq.set_cropmaps(amap, cropmain=True) if iseq.ncrops() == 0: logger.info(' Cropped sequence ' + iseq.oligomer_id + '_' + iseq.name + ' is identical to the original sequence.') else: logger.info(' Cropped sequence ' + iseq.oligomer_id + '_' + iseq.name + ' is ' + str(iseq.ncrops()) + ' residues ' + 'shorter than the original sequence.') # EXECUTION OF EXTERNAL PROGRAMS hhdir = os.path.join(invals['OUTROOT'], pdbid, 'hhblits', '') dmpdir = os.path.join(invals['OUTROOT'], pdbid, 'dmp', '') pisadir = os.path.join(invals['OUTROOT'], pdbid, 'pisa', '') fstr = os.path.join( invals['OUTROOT'], (pdbid + os.extsep + 'crops' + os.extsep + 'seq' + os.extsep + 'pdb')) if cropping: fcropstr = os.path.join( invals['OUTROOT'], pdbid, (pdbid + os.extsep + 'crops' + os.extsep + 'oldids' + os.extsep + 'to_uniprot' + os.path.splitext(invals['INSTR'])[1])) if skipexec is False: # MSA GENERATOR ppaths.mdir(hhdir) if invals['HHBLITS_PARAMETERS'] == ['3', '0.001', 'inf', '50', '99']: logger.info( 'Generating Multiple Sequence Alignment using DeepMetaPSICOV default parameters... [AS RECOMMENDED]' ) elif invals['HHBLITS_PARAMETERS'] == ['2', '0.001', '1000', '0', '90']: logger.info( 'Generating Multiple Sequence Alignment using HHBlits default parameters...' ) else: logger.info( 'Generating Multiple Sequence Alignment using user-custom parameters...' ) for i, iseq in seq.imer.items(): sfile = fcropseq[i] if cropping is True else fseq[i] afile = fcropmsa[i] if cropping is True else fmsa[i] logger.info(pcl.running('HHBlits')) itime = datetime.datetime.now() themsa = psm.runhhblits(sfile, invals['HHBLITS_PARAMETERS'], hhdir) logger.info(pcl.running('HHBlits', done=itime)) if cropping is True: iseq.cropmsa = themsa if iseq.ncrops() == 0: iseq.msa = iseq.cropmsa continue else: pass else: iseq.msa = themsa # DEEP META PSICOV RUN ppaths.mdir(dmpdir) if skipexec is False: logger.info( 'Generating contact prediction lists via DeepMetaPSICOV...') for i, iseq in seq.imer.items(): sfile = fcropseq[i] if cropping is True else fseq[i] afile = fcropmsa[i] if cropping is True else fmsa[i] nsfile = os.path.join(dmpdir, os.path.basename(sfile)) if sfile != nsfile: copyfile(sfile, nsfile) logger.info(pcl.running('DeepMetaPSICOV')) itime = datetime.datetime.now() psd.rundmp(nsfile, afile, dmpdir) logger.info(pcl.running('DeepMetaPSICOV', done=itime)) # INTERFACE GENERATION, PISA ppaths.mdir(pisadir) if skipexec is False: logger.info('Generating interface files via PISA...') sfile = fcropstr if cropping is True else fstr logger.info(pcl.running('PISA')) itime = datetime.datetime.now() iflist = psp.runpisa(sfile, pisadir, sessionid=pdbid) logger.info(pcl.running('PISA', done=itime)) # READ DATA IF SKIPEXEC USED: if skipexec is True: logger.info('Parsing already generated files...') for i, iseq in seq.imer.items(): sfile = fcropstr if cropping is True else fstr afile = fcropmsa[i] if cropping is True else fmsa[i] if cropping is True: # iseq.cropmsa = ckio.read(afile, 'jones') iseq.cropmsa = pio.read(afile, 'jones') if iseq.ncrops() == 0: scoring[1] = True # iseq.msa = ckio.read(afile, 'jones') iseq.msa = ckio.read(afile, 'jones') else: # iseq.msa = ckio.read(afile, 'jones') iseq.msa = pio.read(afile, 'jones') ixml = os.path.join(pisadir, (os.path.splitext(os.path.basename(sfile))[0] + os.extsep + 'interface' + os.extsep + 'xml')) axml = os.path.join(pisadir, (os.path.splitext(os.path.basename(sfile))[0] + os.extsep + 'assembly' + os.extsep + 'xml')) iflist = pci.parse_interface_xml(ixml, axml) # CONTACT ANALYSIS AND MATCH logger.info('Opening output csv files...') resultdir = os.path.join(invals['OUTROOT'], pdbid, 'pisacov', '') ppaths.mdir(resultdir) csvfile = [] csvfile.append( os.path.join(resultdir, (pdbid + os.extsep + "evcovsignal" + os.extsep + "cropped" + os.extsep + "pisacov" + os.extsep + "csv"))) csvfile.append( os.path.join(resultdir, (pdbid + os.extsep + "evcovsignal" + os.extsep + "full" + os.extsep + "pisacov" + os.extsep + "csv"))) for n in range(2): if scoring[n] is True: cpd = True if cropping else False pic.csvheader(csvfile[n], cropped=cpd, pisascore=True) if invals['OUTCSVPATH'][n] is not None: if os.path.isfile(invals['OUTCSVPATH'][n]) is False: pic.csvheader(invals['OUTCSVPATH'][n], cropped=cpd, pisascore=True) logger.info('Parsing sequence files...') for i, fpath in fseq.items(): # seq.imer[i].seqs['conkit'] = ckio.read(fpath, 'fasta')[0] seq.imer[i].seqs['conkit'] = pio.read(fpath, 'fasta', ck=True)[0] logger.info('Parsing contact predictions lists...') conpred = {} matches = [] for s in seq.imer: if s not in conpred: conpred[s] = {} fs = fcropseq[s] if cropping else fseq[s] for source, attribs in sources.items(): fc = os.path.splitext(os.path.basename(fs))[0] fc += os.extsep + attribs[1] confile = os.path.join(dmpdir, fc) # conpred[s][source] = ckio.read(confile, attribs[2])[0] conpred[s][source] = pio.read(confile, attribs[2], ck=True)[0] logger.info('Parsing crystal structure contacts...') for i in range(len(iflist)): logger.info(os.linesep + str(iflist[i])) fs = fcropstr if cropping else fstr fs = (os.path.splitext(os.path.basename(fs))[0] + os.extsep + "interface" + os.extsep + str(i + 1) + os.extsep + "pdb") spath = os.path.join(pisadir, fs) # inputmap = ckio.read(spath, 'pdb') inputmap = pio.read(spath, 'pdb', ck=True) if len(inputmap) == 4: chnames = [ iflist[i].chains[0].crystal_id, iflist[i].chains[1].crystal_id ] iflist[i].chains[0].seq_id = seq.whatseq(chnames[0]) iflist[i].chains[1].seq_id = seq.whatseq(chnames[1]) chseqs = [iflist[i].chains[0].seq_id, iflist[i].chains[1].seq_id] logger.info(iflist[i].chains) chtypes = [iflist[i].chains[0].type, iflist[i].chains[1].type] if (chseqs[0] != chseqs[1] or (chtypes[0] != 'Protein' or chtypes[1] != 'Protein')): if chtypes[0] != "Protein" or chtypes[1] != "Protein": logger.info( 'Interface ' + str(i) + ' is not a Protein-Protein interface. Ignoring.') else: logger.info('Interface ' + str(i) + ' is not a homodimer. Ignoring.') iflist[i].structure = None matches.append(None) continue s = chseqs[0] try: iflist[i].structure = [] for m in range(len(inputmap)): iflist[i].structure.append(inputmap[m].as_contactmap()) iflist[i].structure[m].id = inputmap[m].id except Exception: logger.warning('Contact Maps obtained from a legacy ConKit ' + 'version with no Distograms implemented.') for m in range(len(inputmap)): iflist[i].structure.append(inputmap[m]) # ConKit LEGACY. #fs = fcropstr if cropping else fstr #fs = (os.path.splitext(os.path.basename(fs))[0] + # os.extsep + "interface" + os.extsep + str(i+1) + os.extsep + "con") #spath = os.path.join(pisadir, fs) #pio.write(spath, 'psicov', indata=iflist[i].structure[1]) #iflist[i].contactmap = pio.read(spath, 'array') iflist[i].contactmap = iflist[i].structure[1].deepcopy() matches.append({}) for source, attribs in sources.items(): matches[i][source] = pcc.contact_atlas( name=pdbid + '_' + str(s), dimer_interface=iflist[i], conpredmap=conpred[s][source], conpredtype=source, sequence=seq.imer[s]) if cropping is True: matches[i][source].set_cropmap() matches[i][source].remove_neighbours(mindist=2) matches[i][source].set_conpred_seq() matches[i][source].remove_intra() matches[i][source].make_match(filterout=attribs[3]) for cmode, cmap in matches[i][source].conkitmatch.items(): if (len(cmap) > 0 and len( matches[i][source].interface.structure[1]) > 0): for imtype in plotformats: if len(matches[i][source].conkitmatch) > 1: pout = (os.path.splitext(fs)[0] + os.extsep + 'match' + os.extsep + cmode + os.extsep + source + os.extsep + 'con' + os.extsep + imtype) else: pout = (os.path.splitext(fs)[0] + os.extsep + 'match' + os.extsep + source + os.extsep + 'con' + os.extsep + imtype) plotpath = os.path.join( os.path.dirname(csvfile[0]), pout) matches[i][source].plot_map_alt(plotpath, mode=cmode, plot_type=imtype) else: iflist[i].structure = None iflist[i].contactmap = None matches.append(None) continue logger.info(os.linesep + 'Computing results and writing them to file...' + os.linesep) for i in range(len(iflist)): logger.info('Generating Interface ' + str(i + 1) + ' data...') if matches[i] is None: continue results = [pdbid, str(i + 1)] results.append(iflist[i].chains[0].crystal_id) results.append(iflist[i].chains[1].crystal_id) sid = iflist[i].chains[0].seq_id results.append(str(sid)) results.append(str(seq.imer[sid].length())) if cropping is True: results.append(str(seq.imer[sid].cropmsa.meff)) else: results.append(str(seq.imer[sid].msa.meff)) results.append(str(seq.imer[sid].ncrops())) results.append(str(seq.imer[sid].full_length())) results.append(str(seq.imer[sid].msa.meff)) for source, attribs in sources.items(): appresults = pcs.list_scores(matches[i][source], tag=source) results.extend(appresults) results.append(str(iflist[i].stable)) for n in range(2): if scoring[n] is True: pic.lineout(results, csvfile[n]) pic.lineout(results, invals['OUTCSVPATH'][n]) endmsg = pcl.ok(starttime, command=__script__) logger.info(endmsg) return