Exemplo n.º 1
0
def lbfgs_example(verbose):
  if (exgauss):
    fit = lbfgs_exgauss(x_obs=x_obs,y_obs=y_obs,w_obs=w_obs,initial=initial)
  else:
    fit = lbfgs_gauss(x_obs=x_obs,y_obs=y_obs,w_obs=w_obs,initial=initial)
  print "------------------------------------------------------------------------- "
  print "       Initial and fitted coeffcients, and inverse-curvature e.s.d.'s"
  print "------------------------------------------------------------------------- "

  for i in range(initial.size()):
    print "%2d %10.4f %10.4f %10.4f"%(
           i, initial[i], fit.a[i], fit.a[i])
  X1 = x_obs.as_numpy_array()
  plt.figure(1)
  plt.plot(x_obs,y_obs,'o')#, facecolors='None',edgecolors='b')
#  fout = open('exgauss_simulated.dat','w')
#  for i in range(len(X1)):
#    fout.write("%12.4f" %X1[i])
#    fout.write("%12.4f\n" %y_obs[i])
  if (exgauss):
    F0 = fit.exgauss_cdf_nparray(X1, initial[0], initial[1], initial[2])
    F1 = fit.exgauss_cdf_nparray(X1,fit.a[0],fit.a[1], fit.a[2])
    F2 = fit.exgauss_cdf_nparray(X1,-4000.0,4000.0, 25000.0)
  else:
    F0 = gauss_cdf_nparray(X1, initial[0], initial[1])
    F1 = gauss_cdf_nparray(X1, fit.a[0], fit.a[1])
  plt.plot(X1, F0, 'r*', linewidth=2.0)
  plt.plot(X1,F1,'g+',linewidth=2)
#  plt.plot(X1,F2,'k-',linewidth=2)
  import os
  seed = os.path.split(sys.argv[1])[-1].split('.')[0].split('_')[-1]
  from construct_random_datapt import ExGauss
  EXG= ExGauss(10000, -200000, 200000, fit.a[0], fit.a[1], fit.a[2])
  cdf_cutoff = 0.95
  I_fit = EXG.interpolate_x_value(cdf_cutoff)
  print I_fit
  fout = open('intensity_cdf.dat','a')
  fout.write("%12.5f %12.5f %12.5f %12.5f\n"%(I_fit, fit.a[0], fit.a[1], fit.a[2])) 
  fout.close()
  plt.plot(X1, [cdf_cutoff]*len(X1), 'r--')
  plt.plot([I_fit]*100, np.linspace(0,1,100),'r--' )
  plt.savefig('fit_intensities_%s.pdf'%seed)
  plt.figure(2)
  plt.plot(X1, F2-np.array(y_obs), 'o') 
  plt.plot(X1, [0.0]*len(X1), 'r--')
  plt.ylabel('$\Delta(CDF_{Theory}-CDF_{Calc})$', fontsize=18)
  plt.xlabel('$ Intensity $', fontsize=18)
  plt.hist(x_obs, normed=True,bins=100)
  plt.show()
Exemplo n.º 2
0
    def run(self):
        """
      Runs the mcmc_exgauss class and returns the I_ideal average and variance
    """
        import matplotlib.pyplot as plt
        print '--------------------- Minimization ----------------------------------'
        intensities = exgauss_fit(self.datasource)
        exercise_levenberg_marquardt(intensities)
        initial = intensities.x_0
        mu0, sigma0, tau0 = intensities.x
        self.error_diagonal = [1., 1., 1.]
        self.bootstrap_errors = intensities.bootstrap_errors
        # Get the covariance matrix
        get_covar_from_LM = False
        if get_covar_from_LM:
            intensities.build_up()
            upper = intensities.step_equations().normal_matrix_packed_u()
            nm_elem = flex.double(9)
            self.c = flex.double(3)
            ctr = 0
            for x in xrange(3):
                x_0 = ctr
                for y in xrange(2, x - 1, -1):
                    nm_elem[3 * x + y] = upper[x_0 + (y - x)]
                    ctr += 1
                    if x != y:
                        nm_elem[3 * y + x] = upper[x_0 + (y - x)]
                    else:
                        self.c[x] = upper[x_0 + (y - x)]
            NM = sqr(nm_elem)
            #from IPython import embed; embed(); exit()
            #    self.helper.solve()
            #print list(self.helper.step_equations().cholesky_factor_packed_u())
            #      from IPython import embed; embed()
            error_matrix = NM.inverse()
        #from IPython import embed; embed(); exit()
        #print 'stdev from covariance matrix ', self.error_diagonal
        # Make sure sigma and tau are sensible after minimization. Should not blow up !!
        # This is highly controversial # FIXME
        if sigma0 < 0.0 or tau0 < 0.0:
            print 'Negative sigma or tau values not acceptable'
#      mu0,sigma0,tau0=intensities.initial_guess(wiki_method=True)
        print 'OK'
        print 'Initial Values of params   = %10.4f, %10.4f, %10.4f' % (
            initial[0], initial[1], initial[2])
        print 'Final Values of parameters = %10.4f, %10.4f, %10.4f\n' % (
            mu0, sigma0, tau0)
        X1 = intensities.t.as_numpy_array()
        Y1 = intensities.y.as_numpy_array()
        from construct_random_datapt import ExGauss
        EXG = ExGauss(len(X1), np.min(X1), np.max(X1), mu0, sigma0, tau0)
        I_fit0 = EXG.find_x_from_iter(self.cdf_cutoff)
        print 'Initial from fit I_%.2f value = ' % self.cdf_cutoff, I_fit0
        if self.plot:
            plt.figure(1)
            plt.plot(X1, Y1, '.')
        if (1):
            F0 = intensities.exgauss_cdf_array(X1, initial[0], initial[1],
                                               initial[2])
            F1 = intensities.exgauss_cdf_array(X1, mu0, sigma0, tau0)
            F2 = intensities.exgauss_cdf_array(X1, -4000.0, 4000.0, 25000.0)
#    print 'Initial Sum Squared Difference = ',sum(map(lambda x:x*x,F0-Y1))
        residual = sum(map(lambda x: x * x, F1 - Y1))
        if get_covar_from_LM:
            self.error_diagonal = [
                math.sqrt(residual * error_matrix(a, a)) for a in xrange(3)
            ]
        print ' From LevMar: 1./(df/da)*sqrt(residual) = ', self.error_diagonal
        print 'Final Sum Squared Difference = ', residual
        if self.plot:
            #    plt.plot(X1, F0, 'r*', linewidth=2.0) # Initial guess
            plt.plot(X1, F1, 'g+', linewidth=2)  # Best fit
            plt.ylabel('CDF value')
            plt.xlabel('Intensities')
            # Plot difference between obs and calc values
            plt.figure(2)
            plt.plot(X1, (F1 - Y1), 'o')
            plt.ylabel('$\Delta(CDF_{calc}-CDF_{obs})$', fontsize=18)
            plt.xlabel('Intensities', fontsize=18)
# Now do the MCMC stuff
        print '======================= MCMC stuff beginning ============================'
        #    nsteps = 5
        #    t_start = 5
        #    dt = 1000
        maxI = np.max(X1)  #+np.max(X1)/2.
        minI = np.min(X1)  #-np.min(X1)/2.
        proposal_width = 0.001 * np.abs(maxI - minI)
        #    print 'initial guesses and proposal width = ',mu0, sigma0, tau0, proposal_width
        mcmc_helper = mcmc()
        #    I_exp, cdf_exp = mcmc_helper.find_x_from_expdata_annlib(X1,self.cdf_cutoff)
        #    fitted_cdf = intensities.exgauss_cdf(I_exp, mu0, sigma0, tau0)
        #    print 'Experimental value of I_%.2f and corresponding cdf %.2f= %12.3f'%(self.cdf_cutoff, fitted_cdf,I_exp)
        I_avg_ideal, I_var_ideal, accept_rate = mcmc_helper.sampler(
            X1,
            samples=self.nsteps,
            mu_init=mu0,
            sigma_init=sigma0,
            tau_init=tau0,
            proposal_width=proposal_width,
            t_start=self.t_start,
            dt=self.dt,
            cdf_cutoff=self.cdf_cutoff,
            plot=False,
            analyse_mcmc=False,
            seed=self.mcmc_seed,
            prior_errors=self.bootstrap_errors,
            residual=residual)
        #    mu,sigma, tau = params[-1]
        mu, sigma, tau = [mu0, sigma0, tau0]

        #    plt.figure(3)
        #    plt.plot(X1, F1, '-*g', linewidth=3.0)
        #    for count in range(len(posterior)):
        #      F1 = intensities.exgauss_cdf_array(X1,posterior[count][0], posterior[count][1], posterior[count][2])
        #      plt.plot(X1, F1, 'grey')
        #      EXG = ExGauss(10000,minI,maxI,posterior[count][0], posterior[count][1], posterior[count][2])
        #      I_95 = EXG.find_x_from_iter(self.cdf_cutoff)
        #      plt.plot(I_95,0.05,'r*')
        #    F1 = intensities.exgauss_cdf_array(X1, mu,sigma,tau)
        #    plt.plot(X1,F1,'grey')

        # Take MCMC averages
        #    I_mcmc = []
        #    thinned_params = []
        #    for count in range(self.t_start, self.nsteps,self.dt):
        #      mu,sigma, tau = params[count]
        #      thinned_params.append(params[count])
        #      EXG= ExGauss(10000, minI, maxI, mu,sigma,tau)
        #      I_mcmc.append(EXG.interpolate_x_value(self.cdf_cutoff))

        #    print_I_to_file = False
        #    if print_I_to_file:
        #      fout = open('intensity_mcmc_%.2f.dat'%self.cdf_cutoff, 'a')
        #      if isinstance(self.datasource,str):
        #        fout.write('Mean and Stdev of I_mcmc = %12.7f, %12.7f in file %s %d\n'%(np.mean(I_mcmc), np.std(I_mcmc), self.datasource,self.mcmc_seed))
        #      else:
        #        fout.write('Mean and Stdev of I_mcmc = %12.7f, %12.7f in file %s %d\n'%(np.mean(I_mcmc), np.std(I_mcmc), 'CXI_MERGE',self.mcmc_seed))
        #      fout.close()

        if self.plot:
            plt.show()

#    if np.isnan(np.mean(I_mcmc)):
#      from IPython import embed; embed(); exit()

        del (X1)
        del (F1)
        del (F2)
        del (F0)
        del (mcmc_helper)
        #    return thinned_params
        return I_avg_ideal, I_var_ideal, accept_rate
Exemplo n.º 3
0
def mcmc_lbfgs_example(verbose):
  if (exgauss):
    fit = lbfgs_exgauss(x_obs=x_obs,y_obs=y_obs,w_obs=w_obs,initial=initial)
  else:
    fit = lbfgs_gauss(x_obs=x_obs,y_obs=y_obs,w_obs=w_obs,initial=initial)
  print "------------------------------------------------------------------------- "
  print "       Initial and fitted coeffcients, and inverse-curvature e.s.d.'s"
  print "------------------------------------------------------------------------- "

  for i in range(initial.size()):
    print "%2d %10.4f %10.4f %10.4f"%(
           i, initial[i], fit.a[i], fit.a[i])
  X1 = x_obs.as_numpy_array()
  plt.figure(1)
  plt.plot(x_obs,y_obs,'o')#, facecolors='None',edgecolors='b')
#  fout = open('exgauss_simulated.dat','w')
#  for i in range(len(X1)):
#    fout.write("%12.4f" %X1[i])
#    fout.write("%12.4f\n" %y_obs[i])
  if (exgauss):
    F0 = fit.exgauss_cdf_nparray(X1, initial[0], initial[1], initial[2])
    F1 = fit.exgauss_cdf_nparray(X1,fit.a[0],fit.a[1], fit.a[2])
    F2 = fit.exgauss_cdf_nparray(X1,-4000.0,4000.0, 25000.0)
  else:
    F0 = gauss_cdf_nparray(X1, initial[0], initial[1])
    F1 = gauss_cdf_nparray(X1, fit.a[0], fit.a[1])
  plt.plot(X1, F0, 'r*', linewidth=2.0)
  plt.plot(X1,F1,'g+',linewidth=2)
#  plt.plot(X1,F2,'k-',linewidth=2)
  import os
  seed = os.path.split(sys.argv[1])[-1].split('.')[0].split('_')[-1]
  from construct_random_datapt import ExGauss
  EXG= ExGauss(10000, -200000, 200000, fit.a[0], fit.a[1], fit.a[2])
  cdf_cutoff = 0.95
  I_fit = EXG.interpolate_x_value(cdf_cutoff)
  print I_fit
  fout = open('intensity_cdf.dat','a')
  fout.write("%12.5f\n"%I_fit) 
  fout.close()
  plt.plot(X1, [cdf_cutoff]*len(X1), 'r--')
  plt.plot([I_fit]*100, np.linspace(0,1,100),'r--' )
  plt.savefig('fit_intensities_%s.pdf'%seed)
#  plt.figure(2)
#  plt.plot(X1, F2-np.array(y_obs), 'o') 
#  plt.plot(X1, [0.0]*len(X1), 'r--')
#  plt.ylabel('$\Delta(CDF_{Theory}-CDF_{Calc})$', fontsize=18)
#  plt.xlabel('$ Intensity $', fontsize=18)
#  plt.hist(x_obs, normed=True,bins=100)
#  plt.show()
# =========== NOW DO THE MCMC bit here below ==========
  print '======================= MCMC stuff beginning ============================'
  nsteps = 50000
#  x_obs = x_obs.as_numpy_array()
  maxI = np.max(x_obs)
  minI = np.min(x_obs)
  proposal_width =  0.01*np.abs(maxI-minI)
  print 'initial guesses and proposal width = ',fit.a[0], fit.a[1], fit.a[2], proposal_width
  params = sampler(x_obs, samples=nsteps, mu_init= fit.a[0],sigma_init = fit.a[1],tau_init = fit.a[2],
                   proposal_width = proposal_width,plot=False)
  mu,sigma, tau = params[-1]
  print 'final parameter values ',mu,sigma, tau
#  X1 = np.arange(min(x_obs), max(x_obs),100.0)
  t_start = 0
  dt = 50
  plt.figure(2)
  plt.plot(X1, F1, 'green')
  F1 = exgauss_cdf(X1, mu,sigma,tau)
  plt.plot(X1,F1,'grey')  
  I_mcmc = []
  fout = open('params_mcmc_dummy_%s.dat'%seed, 'w')
  for count in range(t_start,nsteps):
    fout.write("%14.6f   %14.6f  %14.6f\n" %(params[count][0],params[count][1], params[count][2]))
  fout.close()
  exit()
  for count in range(t_start, nsteps,dt):
    mu,sigma, tau = params[count]
    EXG= ExGauss(10000, -200000, 200000, mu,sigma,tau)
    I_mcmc.append(EXG.interpolate_x_value(cdf_cutoff))
# Get CDFs
#    F1 = exgauss_cdf(X1,mu,sigma,tau)
#    plt.plot(X1,F1,'grey',linewidth=1.0)
  print 'Mean and Stdev of I_mcmc = %12.7f, %12.7f'%(np.mean(I_mcmc), np.std(I_mcmc))
  X2 = np.sort(x_obs)
  F2 = np.array(range(len(x_obs)))/float(len(x_obs))
  plt.plot(X2,F2,'o')
  plt.show()
Exemplo n.º 4
0
  def run(self):
    import matplotlib.pyplot as plt
    print '--------------------- Minimization ----------------------------------'
    intensities = exgauss_fit(self.filename)
    exercise_levenberg_marquardt(intensities)
    initial = intensities.x_0
    mu0,sigma0,tau0 = intensities.x
    print 'OK'
    print 'Initial Values of params   = %10.4f, %10.4f, %10.4f'%(initial[0], initial[1], initial[2])
    print 'Final Values of parameters = %10.4f, %10.4f, %10.4f\n'%(mu0,sigma0,tau0)
    X1 = intensities.t.as_numpy_array()
    Y1 = intensities.y.as_numpy_array()
    from construct_random_datapt import ExGauss
    EXG= ExGauss(10000, np.min(X1), np.max(X1), mu0, sigma0, tau0)
    I_fit0 = EXG.interpolate_x_value(self.cdf_cutoff)
    print 'Initial I_%.2f value = '%self.cdf_cutoff, I_fit0
    plt.figure(1)
    plt.plot(X1,Y1,'.')
    if (1):
      F0 = intensities.exgauss_cdf_array(X1, initial[0], initial[1], initial[2])
      F1 = intensities.exgauss_cdf_array(X1,mu0, sigma0, tau0)
      F2 = intensities.exgauss_cdf_array(X1,-4000.0,4000.0, 25000.0)
    print 'Sum Squared Difference = ',sum(map(lambda x:x*x,F1-Y1))
    plt.plot(X1, F0, 'r*', linewidth=2.0)
    plt.plot(X1,F1,'g+',linewidth=2)
    plt.ylabel('CDF value')
    plt.xlabel('Intensities')
    # Plot difference between obs and calc values
    plt.figure(2)
    plt.plot(X1, (F1-Y1), 'o')
    plt.ylabel('$\Delta(CDF_{calc}-CDF_{obs})$', fontsize=18)
    plt.xlabel('Intensities', fontsize=18)

# Now do the MCMC stuff
    print '======================= MCMC stuff beginning ============================'
#    nsteps = 5
#    t_start = 5
#    dt = 1000
    maxI = np.max(X1)+np.max(X1)/5.
    minI = np.min(X1)-np.min(X1)/5.
    proposal_width =  0.01*np.abs(maxI-minI)
    print 'initial guesses and proposal width = ',mu0, sigma0, tau0, proposal_width
    mcmc_helper = mcmc()
    params = mcmc_helper.sampler(X1, samples=self.nsteps, mu_init= mu0,sigma_init = sigma0, tau_init = tau0,
                   proposal_width = proposal_width,plot=False, seed=self.mcmc_seed)
    mu,sigma, tau = params[-1]
    print 'final parameter values ',mu,sigma, tau
    plt.figure(3)
    plt.plot(X1, F1, 'green')
    F1 = intensities.exgauss_cdf_array(X1, mu,sigma,tau)
    plt.plot(X1,F1,'grey')
    I_mcmc = []
#  fout = open('params_mcmc_%s.dat'%seed, 'a')
#  for count in range(t_start,nsteps):
#    fout.write("%14.6f   %14.6f  %14.6f\n" %(params[count][0],params[count][1], params[count][2]))
#  fout.close()
#  exit()
    for count in range(self.t_start, self.nsteps,self.dt):
      mu,sigma, tau = params[count]
      EXG= ExGauss(10000, minI, maxI, mu,sigma,tau)
      I_mcmc.append(EXG.interpolate_x_value(self.cdf_cutoff))
# Get CDFs
#    F1 = exgauss_cdf(X1,mu,sigma,tau)
#    plt.plot(X1,F1,'grey',linewidth=1.0)
#  print 'Mean and Stdev of I_mcmc = %12.7f, %12.7f'%(np.mean(I_mcmc), np.std(I_mcmc))
    import os
    seed = os.path.split(self.filename)[-1].split('.')[0].split('_')[-1]
#    fout = open('intensity_mcmc_%s.dat'%seed, 'a')
    fout = open('intensity_mcmc_%.2f.dat'%self.cdf_cutoff, 'a')
    fout.write('Mean and Stdev of I_mcmc = %12.7f, %12.7f in file %s %d\n'%(np.mean(I_mcmc), np.std(I_mcmc), self.filename,self.mcmc_seed))
    fout.close()
#  X2 = np.sort(x_obs)
#  F2 = np.array(range(len(x_obs)))/float(len(x_obs))
#  plt.plot(X2,F2,'o')
    if self.plot:
      plt.show()
Exemplo n.º 5
0
    def mcmc_statistics(self, posterior, I_mcmc, data, cdf_cutoff):
        ''' Get statistics from the ensemble of curves generated using MCMC
        The following statistics are going to be calculated
        a. I_95_avg
        b. I_95_avg - I_95_exp
        c. P(I_95_mcmc) vs delta(I_95_mcmc-I_95_exp)
        d. I_95_mcmc vs t
        e. RMSD(CDF) vs t
        f. RMSF(CDF) vs i (data point)
      Note that here 95 stands for 95 percentile. In effect it is the cdf cutoff value used my mcmc.sampler.
      So don't take the variable name too literally
    '''
        print 'Printing MCMC summary statistics'
        rmsd_flag = False
        # a.
        I_95_avg = np.mean(I_mcmc)
        print 'I_95_avg = ', I_95_avg, '+/-', np.std(I_mcmc)
        # b.
        I_95_exp, cdf_exp = self.find_x_from_expdata_annlib(data, cdf_cutoff)
        d_I_95_avg = I_95_avg - I_95_exp
        print 'Experimental I_95 = ', I_95_exp
        print 'Deviation of average I_95 from experimental I_95 = ', d_I_95_avg
        #exit()

        plt.figure(3)
        data = np.sort(data)
        fake_pts = np.linspace(np.min(data), np.max(data), 100)
        F1 = np.array(range(1, len(data) + 1)) / float(len(data))
        F1[:] = [z - 0.5 / len(F1) for z in F1]  # Actual Data
        #F1 = self.exgauss_cdf_array(data,posterior[0][0], posterior[0][1], posterior[0][2]) # Best fit from minimization
        plt.plot(data, F1, '.', linewidth=3.0)
        for count in range(1, len(posterior)):
            F1 = self.exgauss_cdf_array(fake_pts, posterior[count][0],
                                        posterior[count][1],
                                        posterior[count][2])
            plt.plot(fake_pts, F1, 'grey')
            EXG = ExGauss(10000, np.min(data), np.max(data),
                          posterior[count][0], posterior[count][1],
                          posterior[count][2])
            I_95 = EXG.find_x_from_iter(cdf_cutoff)
            plt.plot(I_95, 0.05, 'r*')

        F1 = self.exgauss_cdf_array(data, posterior[0][0], posterior[0][1],
                                    posterior[0][2])
        plt.plot(data, F1, 'g+', linewidth=3.0)
        # c.
        d_I_95_mcmc = [np.abs(x - I_95_exp) for x in I_mcmc]
        print 'Average absolute deviation I_95 mcmc from experimental I_95', np.mean(
            d_I_95_mcmc)
        hist, bin_edges = np.histogram(d_I_95_mcmc, density=True)
        plt.figure(4)
        #    plt.hist(d_I_95_mcmc)
        plt.plot(bin_edges[:-1], hist * np.diff(bin_edges), '-*r')
        plt.xlabel('$\Delta(I_{95_calc}-I_{95_obs})$', fontsize=18)
        plt.ylabel('Probability', fontsize=18)
        # d.
        plt.figure(5)
        plt.plot(range(len(I_mcmc)), I_mcmc, 'b')
        plt.plot(range(len(I_mcmc)), [I_95_exp] * len(I_mcmc), '-*r')
        plt.xlabel('time', fontsize=18)
        plt.ylabel('I_95_mcmc', fontsize=18)
        # e.
        if (rmsd_flag):
            rmsd = self.calc_rmsd(posterior, data, cdf_exp)
            print 'Average RMSD of datapoints', np.mean(rmsd)
            plt.figure(6)
            plt.plot(range(len(rmsd)), rmsd, '-*r')
            plt.xlabel('time', fontsize=18)
            plt.ylabel('RMSD', fontsize=18)

        plt.show()
Exemplo n.º 6
0
    def run_sampler(self,
                    samples,
                    data,
                    t_start,
                    dt,
                    mu_current,
                    sigma_current,
                    tau_current,
                    cdf_cutoff,
                    analyse_mcmc=False,
                    exploratory_run=False):
        maxI = np.max(data)  #+np.max(data)/2.
        minI = np.min(data)  #-np.min(data)/2.
        accept_counter = 0
        posterior = [[mu_current, sigma_current, tau_current]]
        I_mcmc = []
        for i in range(samples):
            accept = False
            inf_flag = False
            # trial move
            mu_proposal = np.random.normal(
                mu_current, self.proposal_factor * self.mu_prior_sd)
            sigma_proposal = np.abs(
                np.random.normal(sigma_current,
                                 self.proposal_factor * self.sd_prior_sd))  #
            tau_proposal = np.abs(
                np.random.normal(tau_current,
                                 self.proposal_factor * self.tau_prior_sd))

            likelihood_current = self.exgauss(
                data, mu_current, sigma_current,
                tau_current)  # multiply the probabilties
            likelihood_proposal = self.exgauss(data, mu_proposal,
                                               sigma_proposal,
                                               tau_proposal)  # multiply

            prior_current = self.gauss_pdf(mu_current, self.mu_prior_mu, self.mu_prior_sd)+self.gauss_pdf(sigma_current, self.sd_prior_mu, self.sd_prior_sd)+ \
                            self.gauss_pdf(tau_current, self.tau_prior_mu, self.tau_prior_sd)
            prior_proposal = self.gauss_pdf(mu_proposal, self.mu_prior_mu, self.mu_prior_sd)+self.gauss_pdf(sigma_proposal, self.sd_prior_mu, self.sd_prior_sd)+ \
                             self.gauss_pdf(tau_proposal, self.tau_prior_mu, self.tau_prior_sd)

            if likelihood_proposal == -np.inf:
                accept = False
                inf_flag = True
            if not accept and not inf_flag:
                p_current = likelihood_current + prior_current
                p_proposal = likelihood_proposal + prior_proposal
                p_accept = p_proposal - p_current
                accept = np.log(np.random.rand()) < p_accept
            if accept:
                mu_current = mu_proposal
                sigma_current = sigma_proposal
                tau_current = tau_proposal
                accept_counter += 1
            if i > t_start and i % dt == 0:
                EXG = ExGauss(10000, minI, maxI, mu_current, sigma_current,
                              tau_current)
                I_ideal_temp = EXG.find_x_from_iter(cdf_cutoff)
                I_mcmc.append(I_ideal_temp)
                del (EXG)
                if analyse_mcmc:
                    posterior.append([mu_current, sigma_current, tau_current])
#    print 'acceptance rate',accept_counter*1.0/samples
        I_mcmc_avg = np.mean(I_mcmc)
        I_mcmc_var = np.var(I_mcmc)
        if analyse_mcmc:
            self.mcmc_statistics(posterior, I_mcmc, data, cdf_cutoff)
        del (I_mcmc)
        return I_mcmc_avg, I_mcmc_var, accept_counter * 1.0 / samples
from construct_random_datapt import ExGauss
import matplotlib.pyplot as plt
import numpy as np
import sys

seed = int(sys.argv[1])
exgauss= ExGauss(20, -200000, 200000, -4000.0, 4000.0, 25000.0)
#exgauss_random_array = p.map(exgauss.rand())
#exgauss_random_array = exgauss.rand(seed)
exgauss_random_array = exgauss.rand_annlib(seed)
print 'created numbers'
X2 = np.sort(exgauss_random_array)
F2 = np.array(range(1,len(exgauss_random_array)+1))/float(len(exgauss_random_array))
# Nick's suggestion on using (n-0.5)/N for cdf to create a buffer region
F2[:] = [x-0.5/len(exgauss_random_array) for x in F2]
fout = open('exgauss_simulated_intensities_'+sys.argv[1]+'.dat', 'w')
for i in range(len(X2)):
  fout.write("%12.7f"%X2[i])
  fout.write("%12.7f\n"%F2[i])
print exgauss.interpolate_x_value(0.95)

#plt.plot(X2,F2,'o')