def problem4(cipher1_b64, cipher2_b64, N1, N2):
    cipher1_hex = conversions.b64_to_hex(cipher1_b64)
    cipher2_hex = conversions.b64_to_hex(cipher2_b64)
    cipher1_b10 = int(cipher1_hex,16)
    cipher2_b10 = int(cipher2_hex,16)
    common_factor = euclid_etc.euclid(N1, N2)
    if (common_factor ==1):   #Returning an error as requested if there is no common factor
        return "error: there is no common factor"
    else:
        p1 = N1 / common_factor                 #N1 = common_factor * p1    N1,N2 are the 2 different moduli
        p2 = N2 / common_factor                 #N2 = common_factor * p2
        M1 = (p1 - 1) * (common_factor - 1)     #definition of M as in the notes
        M2 = (p2 - 1) * (common_factor - 1)
        d1 = euclid_etc.extended_euclid(65537, M1)  
        d2 = euclid_etc.extended_euclid(65537, M2)
        d1 = d1[1][0]                           #Need to access the desired part bc we get a tuple and then a tuple within it in the second (technically [1]) so i need to access the actual wanted part
        d2 = d2[1][0] + M2                      #Added M2 because I was getting an error bc originally it was negative and we know that a = b(mod n) -> a+n = b(mod n)
        plaintext1_b10 = euclid_etc.repeated_squaring(cipher1_b10, d1, N1)  #message = c^d(mod n), equation from class and from notes, plug and chug
        plaintext2_b10 = euclid_etc.repeated_squaring(cipher2_b10, d2, N2)
        plaintext1_hex = hex(plaintext1_b10)
        plaintext2_hex = hex(plaintext2_b10)
        plaintext1_hex = hex_string_to_hex(plaintext1_hex)
        plaintext2_hex = hex_string_to_hex(plaintext2_hex)
        plaintext1 = conversions.hex_to_as(plaintext1_hex)
        plaintext2 = conversions.hex_to_as(plaintext2_hex)
        return (plaintext1, plaintext2)         #I returned a tuple of the plaintexts bc I decrypted both of them
def problem1(cipher_b64, N):
    cipher_hex = conversions.b64_to_hex(cipher_b64)
    cipher_b10 = int(cipher_hex,16)
    plaintext_b10 = kthroot(cipher_b10,3)
    plaintext_hex_string = hex(plaintext_b10)
    plaintext_hex = hex_string_to_hex(plaintext_hex_string)
    plaintext_as = conversions.hex_to_as(plaintext_hex)
    return plaintext_as
Exemplo n.º 3
0
def reduce_git(hashb64, column):
    hashhex = conversions.b64_to_hex(hashb64)
    hashV = hashhex[:10]
    results = []
    chars = 'abcdefghijklmnopqrstuvwxyz'
    # Cast hash from str to int then decompose into bytes
    byteArray = getBytes(hashV)
    for i in range(4):
        index = byteArray[(i + column) % len(byteArray)]
        newChar = chars[index % len(chars)]
        results.append(newChar)
    return "".join(results)
def problem2(cipher1_b64, cipher2_b64, cipher3_b64, N1, N2, N3):
    a1_hex = conversions.b64_to_hex(cipher1_b64)
    a2_hex = conversions.b64_to_hex(cipher2_b64)
    a3_hex = conversions.b64_to_hex(cipher3_b64)
    a1_b10 = int(a1_hex,16)
    a2_b10 = int(a2_hex,16)
    a3_b10 = int(a3_hex,16)
    N2N3inv = euclid_etc.extended_euclid(N2*N3,N1)
    N2N3inv = N2N3inv[1][0]                             #This is all just plug and chug
    N1N3inv = euclid_etc.extended_euclid(N1*N3,N2)      #into the CRT equation in the 
    N1N3inv = N1N3inv[1][0]                             #Lecture notes #7. x = ... see notes for full equation
    N1N2inv = euclid_etc.extended_euclid(N1*N2,N3)
    N1N2inv = N1N2inv[1][0]
    parta = a1_b10 * ((N2N3inv) % N1) * (N3*N2)
    partb = a2_b10 * ((N1N3inv) % N2) * (N1*N3)
    partc = a3_b10 * ((N1N2inv) % N3) * (N1*N2)
    x = (parta + partb + partc) % (N1*N2*N3)
    cubeRootx = kthroot(x,3)
    x_hex = hex(cubeRootx)
    x_hex = hex_string_to_hex(x_hex)
    plain = conversions.hex_to_as(x_hex)
    return plain
Exemplo n.º 5
0
def reduce_git1(hashb64, column):
    hashhex = conversions.b64_to_hex(hashb64)
    hashV = hashhex
    z = b26_to_num('z')
    results = []
    chars = 'abcdefghijklmnopqrstuvwxyz'
    # Cast hash from str to int then decompose into bytes
    byteArray = getBytes(hashV)
    for i in range(6):
        index = byteArray[(i + column) % len(byteArray)]
        newChar = chars[index % len(chars)]
        results.append(newChar)
    "".join(results)
    results[3] = num_to_b26((b26_to_num(results[3]) + column) % z, 1)
    pword = "".join(results)
    return pword
Exemplo n.º 6
0
def reduce_git1(hashb64, column):
    hashhex = conversions.b64_to_hex(hashb64)
    hashV = hashhex
    results = []
    chars = 'abcdefghijklmnopqrstuvwxyz'
    # Cast hash from str to int then decompose into bytes
    byteArray = getBytes(hashV)
    for i in range(4):
        index = byteArray[(i + column) % len(byteArray)]
        newChar = chars[index % len(chars)]
        results.append(newChar)
    letter4 = results[3]
    letter4num = ((b26_to_num(letter4)) + column) % 26
    newletter4 = num_to_b26(letter4num, 1)
    # if column > 100:
    #     pword = "".join(results)
    return "".join(results)
Exemplo n.º 7
0
def b64_to_bits(b64text):
    text = conversions.b64_to_hex(b64text)
    bits = int(text, 16)
    return bits