def showdata(args): cvd.checkresize(args.resize_imageW, args.resize_imageH, args.resize_saliencyW, args.resize_saliencyH) cvd.checknormalizerange(args.normalize_image, args.normalize_saliency) filelist = cvd.getfilelist(args.imagefolder, args.saliencyfolder, args.listfile, args.shuffle) # get the shape for h5py dataset image, saliency = cvd.convertimageandmat(filelist[14], args.gray, args.check_size, args.resize_imageW, args.resize_imageH, args.resize_saliencyW, args.resize_saliencyH, args.normalize_image, args.normalize_saliency) with h5py.File('datasetmean.hdf5') as f: mset = f.get('mean') imagemean = mset[0] mean_c = imagemean.mean(1).mean(1) for i in range(imagemean.shape[0]): imagemean[i].fill(mean_c[i]) image = image.astype(np.float32) image -= imagemean image = cvd.chw2hwc(image, args.gray) image = cvd.normalizeimage(image, args.normalize_image) saliency = cvd.l2hw(saliency, args.resize_saliencyW, args.resize_saliencyH) plt.figure() skimage.io.imshow(image) plt.figure() skimage.io.imshow(saliency) skimage.io.show()
def createdata(args): logger_root = logging.getLogger() cvd.checkresize(args.resize_imageW, args.resize_imageH, args.resize_saliencyW, args.resize_saliencyH) cvd.checknormalizerange(args.normalize_image, args.normalize_saliency) filelist = cvd.getfilelist(args.imagefolder, args.saliencyfolder, args.listfile, args.shuffle) # get the shape for h5py dataset image, saliency = cvd.convertimageandmat(filelist[0], args.gray, args.check_size, args.resize_imageW, args.resize_imageH, args.resize_saliencyW, args.resize_saliencyH, args.normalize_image, args.normalize_saliency) N = len(filelist) datashape = tuple([N]) + image.shape labelshape = tuple([N]) + saliency.shape with h5py.File('datasetmean.hdf5') as f: mset = f.get('mean') imagemean = mset[0] mean_c = imagemean.mean(1).mean(1) for i in range(imagemean.shape[0]): imagemean[i].fill(mean_c[i]) # write to h5py dataset with h5py.File(args.outfile) as f: dset = f.create_dataset(name = 'data', shape = datashape, dtype = np.dtype(np.float32), compression = "gzip", compression_opts = 4) lset = f.create_dataset(name = 'label', shape = labelshape, dtype = np.dtype(np.float32), compression = "gzip", compression_opts = 4) for i in range(N): image, saliency = cvd.convertimageandmat(filelist[i], args.gray, args.check_size, args.resize_imageW, args.resize_imageH, args.resize_saliencyW, args.resize_saliencyH, args.normalize_image, args.normalize_saliency) image = image.astype(np.float32) image -= imagemean image = cvd.chw2hwc(image, args.gray) image = cvd.normalizeimage(image, args.normalize_image) image = cvd.hwc2chw(image, args.gray) dset[i] = image lset[i] = saliency if((i + 1) % 100 == 0): logger_root.info('Processed %d files.' %(i + 1)) if((i + 1) % 100 != 0): logger_root.info('Processed %d files.' %(i + 1))