def evaluate(): with tf.Graph().as_default() as g: eval_data = FLAGS.eval_data == 'test' images, labels = convnet.inputs(eval_data=True) # Build a Graph that computes the logits predictions from the # inference model. logits = convnet.inference(images, eval=True) loss = convnet.loss(logits, labels) # Calculate predictions. top_k_op = tf.nn.in_top_k(logits, labels, 1) #Compute confusion matrix conf_mat = tf.contrib.metrics.confusion_matrix( tf.arg_max(logits, 1), tf.cast(labels, tf.int64)) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( convnet.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir, g) while True: eval_once(saver, summary_writer, logits, labels, top_k_op, conf_mat, loss, summary_op) if FLAGS.run_once: break time.sleep(FLAGS.eval_interval_secs)
def evaluate(): """Eval CIFAR-10 for a number of steps.""" with tf.Graph().as_default() as g: # Get images and labels for CIFAR-10. eval_data = FLAGS.eval_data == 'test' images, labels = convnet.inputs(eval_data=True) # Build a Graph that computes the logits predictions from the # inference model. logits = convnet.inference(images) # Calculate predictions. top_k_op = tf.nn.in_top_k(logits, labels, 1) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( convnet.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir, g) while True: eval_once(saver, summary_writer, top_k_op, summary_op) if FLAGS.run_once: break time.sleep(FLAGS.eval_interval_secs)
def evaluate(): with tf.Graph().as_default() as g: eval_data = FLAGS.eval_data == 'test' images, labels = convnet.inputs(eval_data=True) # Build a Graph that computes the logits predictions from the # inference model. logits = convnet.inference(images, eval=True) loss = convnet.loss(logits, labels) # Calculate r-squared measure R_y = tf.reduce_sum(tf.square(labels - tf.squeeze(logits))) R_e = tf.reduce_sum( tf.square(labels - tf.reduce_mean(tf.squeeze(logits)))) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( convnet.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir, g) while True: eval_once(saver, summary_writer, logits, labels, loss, R_y, R_e, summary_op) if FLAGS.run_once: break time.sleep(FLAGS.eval_interval_secs)
def train(): with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False) # Get images and labels. images, labels = convnet.inputs() # Build a Graph that computes the logits predictions from the # inference model. logits = convnet.inference(images) # Calculate loss. loss = convnet.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = convnet.train(loss, global_step) # Create a saver. saver = tf.train.Saver(tf.all_variables()) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Build an initialization operation to run below. init = tf.initialize_all_variables() # Start running operations on the Graph. sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)) sess.run(init) # Start the queue runners. tf.train.start_queue_runners(sess=sess) summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph) for step in xrange(FLAGS.max_steps): start_time = time.time() _, loss_value = sess.run([train_op, loss]) duration = time.time() - start_time assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step % 10 == 0: num_examples_per_step = FLAGS.batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ''sec/batch)') print (format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) if step % 100 == 0: summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 1000 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) if __name__ == '__main__': train()
def train(): with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False) # Get images and labels. images, labels = convnet.inputs(eval_data=False) # Build a Graph that computes the logits predictions from the # inference model. logits = convnet.inference(images) # Calculate loss. loss = convnet.loss(logits, labels) # Build a Graph that trains the model with one batch of examples and # updates the model parameters. train_op = convnet.train(loss, global_step) # Create a saver. saver = tf.train.Saver(tf.all_variables()) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Build an initialization operation to run below. init = tf.initialize_all_variables() # Start running operations on the Graph. sess = tf.Session(config=tf.ConfigProto( log_device_placement=FLAGS.log_device_placement)) sess.run(init) # Load previously stored model from checkpoint ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir) if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoint saver.restore(sess, ckpt.model_checkpoint_path) # Assuming model_checkpoint_path looks something like: # /my-favorite-path/cifar10_train/model.ckpt-0, # extract global_step from it. global_step = ckpt.model_checkpoint_path.split('/')[-1].split( '-')[-1] print("Loading from checkpoint.Global step %s" % global_step) else: print("No checkpoint file found...Creating a new model...") stepfile = "/home/soms/EmotionMusic/Model1/stepfile.txt" if not os.path.exists(stepfile): print("No step file found.") step = 0 else: f = open(stepfile, "r") step = int(f.readlines()[0]) print("Step file step %d" % step) # Start the queue runners. tf.train.start_queue_runners(sess=sess) summary_writer = tf.train.SummaryWriter(FLAGS.train_dir, sess.graph) while step < FLAGS.max_steps: start_time = time.time() _, loss_value = sess.run([train_op, loss]) duration = time.time() - start_time def signal_handler(signal, frame): f = open(stepfile, 'w') f.write(str(step)) print("Step file written to.") sys.exit(0) signal.signal(signal.SIGINT, signal_handler) assert not np.isnan(loss_value), 'Model diverged with loss = NaN' if step % 10 == 0: num_examples_per_step = FLAGS.batch_size examples_per_sec = num_examples_per_step / duration sec_per_batch = float(duration) format_str = ( '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ' 'sec/batch)') print(format_str % (datetime.now(), step, loss_value, examples_per_sec, sec_per_batch)) if step % 100 == 0: summary_str = sess.run(summary_op) summary_writer.add_summary(summary_str, step) # Save the model checkpoint periodically. if step % 500 == 0 or (step + 1) == FLAGS.max_steps: checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) step += 1