Exemplo n.º 1
0
def resize_images(imagePath, resizedPath, size=[800, 800]):
    cv = Convnet(False, False, size, form=True)
    sizeTxt = '{}x{}'.format(size[0], size[1])
    lastResized = getLastFromDir(resizedPath + '/' + sizeTxt)
    for subdir, dirs, files in os.walk(imagePath):
        lenFiles = len(files)
        break
    nameList = list(x + lastResized for x in range(lenFiles))
    x = 0
    for subdir, dirs, files in os.walk(imagePath):
        for file in files:
            path = subdir.replace("""\ """, '/') + '/' + file
            try:
                img = imread(path).astype(np.float32)
                if img.shape[2] != 3:
                    newImg = np.zeros((img.shape[0], img.shape[1], 3))
                    for x in range(len(newImg)):
                        for y in range(len(newImg[x])):
                            for z in range(len(newImg[x][y])):
                                newImg[x][y][z] = img[x][y][z]
                    img = newImg
            except Exception as e:
                print(e)
                print(file)
                continue
            img = img.reshape(img.shape[0], img.shape[1], 3)
            image = cv.format_images([img])[0]
            name = nameList[random.randrange(len(nameList))]
            scipy.misc.imsave(
                resizedPath + '/' + sizeTxt + '/' + '{}.png'.format(x), image)
            x += 1
            nameList.remove(name)
            lastResized += 1
Exemplo n.º 2
0
 def __init__(self, memory_size=1000, crop_size=192, z_size=32, lr=LR):
     self.dqn, self.target = Convnet().cuda(), Convnet().cuda()
     self.crop_size = crop_size
     self.z_size = z_size
     self.memory_size = memory_size
     self.mb_pool = np.zeros([memory_size, crop_size, crop_size, z_size])
     self.maft_pool = np.zeros([memory_size, crop_size, crop_size, z_size])
     self.reward_pool = np.zeros([memory_size, 1])
     self.action_pool = np.zeros([memory_size, 1])
     self.count = 0
     self.learn_step_counter = 0
     self.optimizer = torch.optim.Adam(self.dqn.parameters(), lr=lr)
     self.loss_func = nn.MSELoss()
Exemplo n.º 3
0
def create_model(model_opts, sys_opts, device):
    if model_opts.classifier == 'maml':
        model = ModelConvMiniImagenet(5, hidden_size=64)
        model.load_state_dict(
            torch.load(os.path.join(sys_opts.root, sys_opts.load_path)))
        model.classifier = nn.Linear(12544, 1000)
        return model
    if model_opts.backbone == 'resnet-18':
        backbone = models.resnet18(pretrained=model_opts.pretrained)
        if model_opts.path_to_model is not None:
            pretrained_model_dict = torch.load(model_opts.path_to_model)
            backbone.load_state_dict(pretrained_model_dict)
    elif model_opts.backbone == 'resnet-34':
        backbone = models.resnet34(pretrained=model_opts.pretrained)
    elif model_opts.backbone == 'resnet-50':
        backbone = models.resnet50(pretrained=model_opts.pretrained)
        if model_opts.path_to_model is not None:
            pretrained_model_dict = torch.load(model_opts.path_to_model)
            backbone.load_state_dict(pretrained_model_dict)
    elif model_opts.backbone == 'mobilenetv2':
        backbone = models.mobilenet_v2(pretrained=model_opts.pretrained)
    elif model_opts.backbone == 'densenet-161':
        backbone = models.densenet161(pretrained=model_opts.pretrained)
    elif model_opts.backbone == 'convnet':
        backbone = Convnet()
    else:
        sys.exit("Given model not in predefined set of models")
    if model_opts.classifier == 'knn':
        backbone = extract_backbone(backbone)
        if model_opts.similarity_measure == 'euclidean':
            measure = euclidean_metric
        elif model_opts.similarity_measure == 'cosine':
            measure = cosine_sim
        model = KNN(backbone, measure)
    elif model_opts.classifier == 'linear':
        model = backbone
    elif model_opts.classifier == 'split':
        #TODO consider refactoring this to take the base classes as array rather than loading them from file
        model = SplitModel(backbone, model_opts.split_layers,
                           sys_opts.sequence_num, sys_opts.root,
                           model_opts.num_classes, device)
    elif model_opts.classifier == 'hybrid':
        model = backbone
        backbone = extract_backbone(backbone)
        if model_opts.similarity_measure == 'euclidean':
            measure = euclidean_metric
        elif model_opts.similarity_measure == 'cosine':
            measure = cosine_sim
        elif model_opts.similarity_measure == 'dot':
            measure = dot_product
        model = Hybrid(backbone, measure, model)
    elif model_opts.classifier == 'ptn':
        measure = euclidean_metric
        backbone = extract_backbone(backbone)
        model = KNN(backbone, measure)
        model.load_state_dict(
            torch.load(os.path.join(sys_opts.root, sys_opts.load_path)))
    else:
        sys.exit("Given classifier not in predefined set of classifiers")
    return model
Exemplo n.º 4
0
 def test_convnet_dropout(self):
     #Test that dropout is performed correctly
     tensorflow.reset_default_graph()
     network = Convnet(self.params,
                       tensorflow.placeholder(tensorflow.float32,
                                              (None, 128, 128, 3),
                                              name="x"),
                       training=True)
     assert sum(["dropout" in v.name
                 for v in network.var_dict.values()]) == 2
     tensorflow.reset_default_graph()
     network = Convnet(self.params,
                       tensorflow.placeholder(tensorflow.float32,
                                              (None, 128, 128, 3),
                                              name="x"),
                       training=False)
     assert sum(["dropout" in v.name
                 for v in network.var_dict.values()]) == 0
Exemplo n.º 5
0
def save_as_array(imagePath, arrayPath, size=[800, 800]):
    cv = Convnet(False, False, size, form=True)
    sizeTxt = '{}x{}'.format(size[0], size[1])
    lastArray = getLastFromDir(arrayPath + '/' + sizeTxt)
    batch = []
    for subdir, dirs, files in os.walk(imagePath):
        for file in files:
            path = subdir.replace("""\ """, '/') + '/' + file
            img = imread(path).astype(np.float32)
            batch.append(img)
            if len(batch) >= batch_size:
                with open(
                        arrayPath + '/' + sizeTxt + '/' + str(lastArray + 1) +
                        '.p', "wb") as f:
                    batch = cv.format_images(batch)
                    lastArray += 1
                    pickle.dump(batch, f)
                batch = []
    with open(arrayPath + '/' + str(lastArray + 1) + '.p', "wb") as f:
        pickle.dump(batch, f)
Exemplo n.º 6
0
def build_graph(params, training):
	"""
		Build the convnet and the placeholder variables
	"""
	tf.reset_default_graph()
	x = tf.placeholder(tf.float32, (None, 128, 128, 3), name="x") #the input variable
	y = tf.placeholder(tf.float32, (None, 2), name="y") #the output variable

	#Build the network and get the updatw
	network = Convnet(params, x, training=training)
	cost, updt = ch.get_cost_updt(params, network.pred, y)
	return x, y, network, cost, updt
Exemplo n.º 7
0
def main(opts):
    pprint(vars(opts))
    device = torch.device(opts.device)
    print('using device: {}'.format(device))

    encoder = Convnet().to(device)
    encoder.load_state_dict(torch.load(opts.weights))
    encoder.eval()
    pipeline = protoPipe(encoder, opts.shot_k, opts.query_k)

    test_set = MNIST(mode='test')
    test_sampler = TaskSampler(test_set.label, 1000, opts.n_way,
                               opts.shot_k + opts.query_k)
    test_loader = DataLoader(dataset=test_set,
                             batch_sampler=test_sampler,
                             num_workers=8,
                             pin_memory=True)

    test_acc = []
    for episode, batch in enumerate(test_loader, 0):
        task = batch[0].view(opts.n_way * (opts.shot_k + opts.query_k), 3, 84,
                             84)
        loss, acc = pipeline(task.to(device), opts.n_way)
        test_acc.append(acc)

    m, h = mean_confidence_interval(test_acc)
    print('TEST set  acc: {:.4f}, h: {:.4f}'.format(m, h))
Exemplo n.º 8
0
 def test_convnet_naming(self):
     #Test that layers are name scoped properly
     tensorflow.reset_default_graph()
     network = Convnet(self.params,
                       tensorflow.placeholder(tensorflow.float32,
                                              (None, 128, 128, 3),
                                              name="x"),
                       training=True)
     for k, v in network.var_dict.items():
         if "conv" in k:
             assert k in v.name
     tvars = tensorflow.trainable_variables()
     for t in tvars:
         assert "conv" in t.name or "fc" in t.name or "prediction" in t.name
Exemplo n.º 9
0
    def test_gradient_connectivity(self):
        # Make sure that all trainable variables have gradients computed when we backprop from error
        tensorflow.reset_default_graph()
        network = Convnet(self.params,
                          tensorflow.placeholder(tensorflow.float32,
                                                 (None, 128, 128, 3),
                                                 name="x"),
                          training=True)
        y = tensorflow.placeholder(tensorflow.float32, (None, 2),
                                   name="y")  #the output variable

        cost, updt = ch.get_cost_updt(self.params, network.pred, y)
        gvs = tensorflow.train.AdamOptimizer(
            learning_rate=self.params["learning_rate"]).compute_gradients(cost)
        gvnames = set([g[1] for g in gvs])
        for v in tensorflow.trainable_variables():
            assert v in gvnames
Exemplo n.º 10
0
def main(opts):
    pprint(vars(opts))
    device = torch.device(opts.device)
    print('using device: {}'.format(device))

    encoder = Convnet().to(device)
    encoder.load_state_dict(torch.load(opts.weights))
    encoder.eval()
    pipeline = protoPipe(encoder, opts.shot_k, opts.query_k)

    if opts.seed is not None:
        torch.manual_seed(opts.seed)
        torch.cuda.manual_seed_all(opts.seed)
        np.random.seed(opts.seed)
        print("\nrandom seed: {}".format(opts.seed))

    if opts.dataset == 'mini':
        test_set = MiniImageNet(mode='test')
    elif opts.dataset == 'MNIST':
        test_set = MNIST(mode='test')
    elif opts.dataset == 'CIFAR':
        test_set = CIFAR(mode='test')
    elif opts.dataset == 'FashionMNIST':
        test_set = Fashion_MNIST(mode='test')

    test_sampler = TaskSampler(test_set.label, 1000, opts.n_way,
                               opts.shot_k + opts.query_k)
    test_loader = DataLoader(dataset=test_set,
                             batch_sampler=test_sampler,
                             num_workers=8,
                             pin_memory=True)

    test_acc = []
    for episode, batch in enumerate(test_loader, 0):
        task = batch[0].view(opts.n_way * (opts.shot_k + opts.query_k), 3, 84,
                             84)
        loss, acc = pipeline(task.to(device), opts.n_way)
        test_acc.append(acc)

    m, h = mean_confidence_interval(test_acc)
    print('TEST set  acc: {:.4f}, h: {:.4f}'.format(m, h))
Exemplo n.º 11
0
def main(args):
    device = torch.device(args.device)
    ensure_path(args.save_path)

    data = Data(args.dataset, args.n_batches, args.train_way, args.test_way, args.shot, args.query)
    train_loader = data.train_loader
    val_loader = data.valid_loader

    model = Convnet(x_dim=2).to(device)
    
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)

    def save_model(name):
        torch.save(model.state_dict(), osp.join(args.save_path, name + '.pth'))
    
    trlog = dict(
        args=vars(args),
        train_loss=[],
        val_loss=[],
        train_acc=[],
        val_acc=[],
        max_acc=0.0,
    )

    timer = Timer()

    for epoch in range(1, args.max_epoch + 1):
        lr_scheduler.step()

        model.train()

        tl = Averager()
        ta = Averager()

        for i, batch in enumerate(train_loader, 1):
            data, _ = [_.to(device) for _ in batch]
            data = data.reshape(-1, 2, 105, 105)
            p = args.shot * args.train_way
            embedded = model(data)
            embedded_shot, embedded_query = embedded[:p], embedded[p:]

            proto = embedded_shot.reshape(args.shot, args.train_way, -1).mean(dim=0)

            label = torch.arange(args.train_way).repeat(args.query).to(device)

            logits = euclidean_metric(embedded_query, proto)
            loss = F.cross_entropy(logits, label)
            acc = count_acc(logits, label)
            print('epoch {}, train {}/{}, loss={:.4f} acc={:.4f}'
                  .format(epoch, i, len(train_loader), loss.item(), acc))

            tl.add(loss.item())
            ta.add(acc)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        tl = tl.item()
        ta = ta.item()

        model.eval()

        vl = Averager()
        va = Averager()

        for i, batch in enumerate(val_loader, 1):
            data, _ = [_.cuda() for _ in batch]
            data = data.reshape(-1, 2, 105, 105)
            p = args.shot * args.test_way
            data_shot, data_query = data[:p], data[p:]

            proto = model(data_shot)
            proto = proto.reshape(args.shot, args.test_way, -1).mean(dim=0)

            label = torch.arange(args.test_way).repeat(args.query).to(device)

            logits = euclidean_metric(model(data_query), proto)
            loss = F.cross_entropy(logits, label)
            acc = count_acc(logits, label)

            vl.add(loss.item())
            va.add(acc)

        vl = vl.item()
        va = va.item()
        print('epoch {}, val, loss={:.4f} acc={:.4f}'.format(epoch, vl, va))

        if va > trlog['max_acc']:
            trlog['max_acc'] = va
            save_model('max-acc')

        trlog['train_loss'].append(tl)
        trlog['train_acc'].append(ta)
        trlog['val_loss'].append(vl)
        trlog['val_acc'].append(va)

        torch.save(trlog, osp.join(args.save_path, 'trlog'))

        save_model('epoch-last')

        if epoch % args.save_epoch == 0:
            save_model('epoch-{}'.format(epoch))

        print('ETA:{}/{}'.format(timer.measure(), timer.measure(epoch / args.max_epoch)))
Exemplo n.º 12
0
    logfile = open(osp.join(args.save_path, logname + '.txt'), 'w+')
    pprint(vars(args))

    set_gpu(args.gpu)

    valset = MiniImageNet2('trainvaltest')
    val_loader = DataLoader(dataset=valset, batch_size = 128,
                            num_workers=8, pin_memory=True)
    valset2 = MiniImageNet2('trainval')
    val_loader2 = DataLoader(dataset=valset2, batch_size = 128,
                            num_workers=8, pin_memory=True)
    valset3 = MiniImageNet2('test')
    val_loader3 = DataLoader(dataset=valset3, batch_size = 128,
                            num_workers=8, pin_memory=True)

    model_cnn = Convnet().cuda()
    model_cnn.load_state_dict(torch.load('./100way_pn_basenovel.pth'))
    global_proto = torch.load('./global_proto_basenovel_PN_5shot_500.pth')
    global_base =global_proto[:args.n_base_class,:]
    global_novel = global_proto[args.n_base_class:,:]
    global_base = [Variable(global_base.cuda(),requires_grad=True)]
    global_novel = [Variable(global_novel.cuda(),requires_grad=True)]

    def log(out_str):
        print(out_str)
        logfile.write(out_str+'\n')
        logfile.flush()

    model_cnn.eval()
    for epoch in range(1, args.max_epoch + 1):
from data.datamgr import SetDataManager
from parser_util import parse_args, get_best_file
from utils import set_device, euclidean_dist

if __name__ == '__main__':

    params = parse_args('test')
    device = set_device(params)

    acc_all = []
    image_size = 84
    iter_num = 600

    few_shot_params = dict(n_way=params.test_n_way, n_support=params.n_shot)
    model = Convnet()
    model = model.to(device)

    checkpoint_dir = '%s/checkpoints/%s_%dway_%dshot' % (
        configs.save_dir, params.dataset, params.train_n_way, params.n_shot)
    if params.train_aug:
        checkpoint_dir += '_aug'

    modelfile = get_best_file(checkpoint_dir)
    if modelfile is not None:
        tmp = torch.load(modelfile)
        model.load_state_dict(tmp['state'])

    split = params.split
    if params.save_iter != -1:
        split_str = split + "_" + str(params.save_iter)
Exemplo n.º 14
0
    ss_sampler = CategoriesSampler(ssdata.slabel, 100, args.train_way,
                                   2 * args.shot + args.query)
    ss_loader = DataLoader(dataset=ssdata,
                           batch_sampler=ss_sampler,
                           num_workers=args.num_workers,
                           pin_memory=True)

    valset = MiniImageNet('val')
    val_sampler = CategoriesSampler(valset.label, 400, args.test_way,
                                    args.shot + args.query)
    val_loader = DataLoader(dataset=valset,
                            batch_sampler=val_sampler,
                            num_workers=args.num_workers,
                            pin_memory=True)

    model = Convnet().cuda()
    if args.load is not 'na':
        print('Loading Model')
        model.load_state_dict(torch.load(args.load))

    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                   step_size=20,
                                                   gamma=0.5)

    def save_model(name):
        torch.save(model.state_dict(), osp.join(args.save_path, name + '.pth'))

    timer = Timer()
    # s_label = torch.arange(args.train_way).repeat(args.shot).view(args.shot * args.train_way)
    # s_onehot = torch.zeros(s_label.size(0), 20)
Exemplo n.º 15
0
    ensure_path(args.save_path)
    writer = SummaryWriter()
    #noise = torch.distributions.Normal(loc=0, scale=.02)
    trainset = MiniImageNet('train')
    train_sampler = CategoriesSampler(trainset.label, 100,
                                      args.train_way, args.shot + args.query)
    train_loader = DataLoader(dataset=trainset, batch_sampler=train_sampler,
                              num_workers=args.num_workers, pin_memory=True)

    valset = MiniImageNet('val')
    val_sampler = CategoriesSampler(valset.label, 400,
                                    args.test_way, args.shot + args.query)
    val_loader = DataLoader(dataset=valset, batch_sampler=val_sampler,
                            num_workers=args.num_workers, pin_memory=True)

    model = torch.nn.DataParallel(Convnet())
    if args.load is not 'na':
        model.load_state_dict(torch.load(args.load))

    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)


    def save_model(name):
        torch.save(model.state_dict(), osp.join(args.save_path, name + '.pth'))


    timer = Timer()
    s_label = torch.arange(args.train_way).repeat(args.shot).view(args.shot * args.train_way)
    s_onehot = torch.zeros(s_label.size(0), 20)
    s_onehot = s_onehot.scatter_(1, s_label.unsqueeze(dim=1), 1).cuda()
Exemplo n.º 16
0
    trainset = DiabeticRetinopathy('train')
    train_sampler_ = PrototypicalBatchSampler(trainset.label, 3, train_way,
                                              shot + query)
    train_loader = DataLoader(dataset=trainset,
                              batch_sampler=train_sampler_,
                              num_workers=8)

    valset = DiabeticRetinopathy('val')
    val_sampler = PrototypicalBatchSampler(valset.label, 4, test_way,
                                           shot + query)
    val_loader = DataLoader(dataset=valset,
                            batch_sampler=val_sampler,
                            num_workers=8,
                            pin_memory=True)

    model = Convnet()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                   step_size=20,
                                                   gamma=0.5)

    def save_model(name):
        torch.save(model.state_dict(), osp.join(save_path, name + '.pth'))

    trlog = {}
    trlog['args'] = vars(args)
    trlog['train_loss'] = []
    trlog['val_loss'] = []
    trlog['train_acc'] = []
    trlog['val_acc'] = []
    trlog['max_acc'] = 0.0
Exemplo n.º 17
0
    train_loader = DataLoader(dataset=trainset,
                              batch_sampler=train_sampler,
                              num_workers=8,
                              pin_memory=True)

    #valset = MiniImageNet('test')
    valset = MiniImageNet('trainvaltest')
    val_sampler = CategoriesSampler_val_100way(valset.label, 400,
                                               args.test_way, args.shot,
                                               args.query_val)
    val_loader = DataLoader(dataset=valset,
                            batch_sampler=val_sampler,
                            num_workers=8,
                            pin_memory=True)

    model_cnn = Convnet().cuda()
    model_reg = Registrator().cuda()
    model_cnn.load_state_dict(
        torch.load(
            './iterative_G3_trainval_lr150epoch_dataaugumentation_2epoch-175_backbone.pth'
        ))

    noise_dim = 128
    model_gen = Hallucinator(noise_dim).cuda()
    model_gen.load_state_dict(
        torch.load(
            './iterative_G3_trainval_lr150epoch_dataaugumentation_2epoch-175_gen.pth'
        ))

    global_proto = torch.load('./global_proto_all_new.pth')
    global_base = global_proto[:args.n_base_class, :]
Exemplo n.º 18
0
                              num_workers=8,
                              pin_memory=True)

    valset = MiniImageNet('val')
    val_sampler = CategoriesSampler(valset.label, 400, args.test_way,
                                    args.shot + args.query)
    val_loader = DataLoader(dataset=valset,
                            batch_sampler=val_sampler,
                            num_workers=8,
                            pin_memory=True)

    if args.multi == False:
        gen = generator(1600, 1).cuda()
    else:
        gen = generator(1600, 1600).cuda()
    model = Convnet().cuda()
    #gradient_mean=Bufferswitch()

    optimizer = torch.optim.Adam(list(model.parameters()) +
                                 list(gen.parameters()),
                                 lr=0.001)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                   step_size=20,
                                                   gamma=0.5)

    def save_model(name):
        torch.save(model.state_dict(), osp.join(save_path, name + '.pth'))

    def save_gen(name):
        torch.save(gen.state_dict(), osp.join(save_path, name + '.pth'))
        dis = torch.pow(cls_proto_ext-query_feats_ext, 2).sum(dim=2)
        relations = F.log_softmax(-dis, dim=1)
        # print(dis.mean())
        loss = -relations.gather(1, query_labels.view(-1,1)).mean()

        pred = torch.argmax(relations, dim=1)
        acc = (pred==query_labels.view(-1)).float().mean().item()

        # print((pred==query_labels.view(-1)).float().sum().item())

        return loss, acc


if '__main__' == __name__:
    from torch.utils.data import DataLoader
    from data import MiniImageNet, MiniImageNetSampler

    trainset = MiniImageNet('train')
    train_sampler = MiniImageNetSampler(trainset.label, 2,
                                        20, 5+15)
    train_loader = DataLoader(dataset=trainset, batch_sampler=train_sampler,
                              num_workers=8, pin_memory=True)
    convnet = Convnet().cuda()

    pipe = protoPipe(convnet)
    for epoch, batch in enumerate(train_loader, 0):
        print(epoch)
        batch = batch[0]
        loss, acc = pipe(batch.cuda(), 20)
        loss.backward()
        print(loss)
Exemplo n.º 20
0
    return history


if __name__ == '__main__':
    args = parser.parse_args()

    # limit gpu memory

    if args.limit > 0:
        utils.limit_gpu_memory(args.limit)

    # prepare model
    if args.resume:
        model = load_model(args.model_path)
    else:
        model = Convnet(args.max_len, args.win_size)
        model.compile(loss='binary_crossentropy',
                      optimizer='adam',
                      metrics=['acc'])

    # prepare data
    # see more in [exmaple.csv](https://github.com/j40903272/MalConv-keras/blob/master/example.csv) (1:benign, 0:malicious)
    #
    # preprocess is handled in utils.data_generator
    df = pd.read_csv(args.csv, header=None)
    data, label = df[0].values, df[1].values
    x_train, x_test, y_train, y_test = utils.train_test_split(
        data, label, args.val_size)
    print('Train on %d data, test on %d data' % (len(x_train), len(x_test)))

    history = train(model, args.max_len, args.batch_size, args.verbose,
Exemplo n.º 21
0
def visualize_convnet():
    sal_map_type = "Deconv_maxlogit"  # change it to get different visualizations
    image_name = 'tabby'  # or using a list to deal with multiple images
    max_pool = True  #indicate whether to add a max-pooling layer

    data_dir = "../data"
    save_dir = "results"
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)

    n_labels = 1000
    n_input = 224

    fns = []
    image_list = []
    label_list = []

    # load in the original image and its adversarial examples
    for image_path in glob.glob(os.path.join(data_dir, '{}.png'.format(image_name))):
        fns.append(os.path.basename(image_path).split('.')[0])
        image = imread(image_path, mode='RGB')
        image = imresize(image, (n_input, n_input)).astype(np.float32)
        image_list.append(image)
        onehot_label = np.array([1 if i == image_dict[image_name] else 0 for i in range(n_labels)])
        label_list.append(onehot_label)

    batch_img = np.array(image_list)
    batch_label = np.array(label_list)

    batch_size = batch_img.shape[0]

    # tf session
    sess = tf.Session()

    # construct the graph based on the gradient type we want
    # plain relu vs guidedrelu
    if sal_map_type.split('_')[0] == 'GuidedBackprop':
        eval_graph = tf.get_default_graph()
        with eval_graph.gradient_override_map({'Relu': 'GuidedRelu'}):
            conv_model = Convnet(sess,max_pool)
    # ADD DECONV
    elif sal_map_type.split('_')[0] == 'Deconv':
        eval_graph = tf.get_default_graph()
        with eval_graph.gradient_override_map({'Relu': 'DeconvRelu'}):
            conv_model = Convnet(sess,max_pool)
    elif sal_map_type.split('_')[0] == 'PlainSaliency':
        conv_model = Convnet(sess,max_pool)
    else:
        raise Exception("Unknown saliency type")

    # saliency gradient to input layer
    if sal_map_type.split('_')[1] == "cost":
        sal_map = tf.gradients(conv_model.cost, conv_model.imgs)[0]
    elif sal_map_type.split('_')[1] == 'maxlogit':
        sal_map = tf.gradients(conv_model.maxlogit, conv_model.imgs)[0]
    elif sal_map_type.split('_')[1] == 'randlogit':
        sal_map = tf.gradients(conv_model.logits[:, random.randint(0, 999)], conv_model.imgs)[0]
    else:
        raise Exception("Unknown logit gradient type")

    # predict
    probs = sess.run(conv_model.probs, feed_dict={conv_model.images: batch_img})

    # sal_map
    sal_map_val = sess.run(sal_map, feed_dict={conv_model.images: batch_img, conv_model.labels: batch_label})

    for idx in range(batch_size):
        print_prob(probs[idx])
        visualize(sal_map_val[idx], sal_map_type, save_dir, fns[idx])
def main(opts):
    pprint(vars(opts))
    ensure_path(opts.name)
    with open(osp.join(opts.name, 'settings.txt'), 'w') as f:
        dic = vars(opts)
        f.writelines(["{}: {}\n".format(k, dic[k]) for k in dic])

    if opts.seed is not None:
        torch.manual_seed(opts.seed)
        torch.cuda.manual_seed_all(opts.seed)
        np.random.seed(opts.seed)
        print("\nrandom seed: {}".format(opts.seed))
    writer = SummaryWriter('./{}/run'.format(opts.name))

    device = torch.device(opts.device)
    print('using device: {}'.format(device))

    train_set = MiniImageNet(mode='train')
    train_sampler = MiniImageNetSampler(train_set.label, 100, opts.c_sampled,
                                        opts.shot_k + opts.query_k)
    train_loader = DataLoader(dataset=train_set,
                              batch_sampler=train_sampler,
                              num_workers=8,
                              pin_memory=True)
    val_set = MiniImageNet(mode='val')
    val_sampler = MiniImageNetSampler(val_set.label, 400, opts.n_way,
                                      opts.shot_k + opts.query_k)
    val_loader = DataLoader(dataset=val_set,
                            batch_sampler=val_sampler,
                            num_workers=8,
                            pin_memory=True)

    encoder = Convnet().to(device)
    # print(encoder.state_dict()['block4.0.bias'])
    pipeline = protoPipe(encoder, opts.shot_k, opts.query_k)
    pipeline.train()

    optimizer = optim.Adam(
        encoder.parameters(),
        opts.lr,
    )
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                   step_size=2000,
                                                   gamma=0.5)
    max_val_acc = 0
    for epoch in range(opts.epoch // 100):

        for episode, batch in enumerate(train_loader, 0):
            lr_scheduler.step()

            task = batch[0].view(opts.c_sampled * (opts.shot_k + opts.query_k),
                                 3, 84, 84)
            loss, acc = pipeline(task.to(device), opts.c_sampled)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if episode % 10 == 0:
                writer.add_scalar("train_loss", loss.item(),
                                  epoch * 100 + episode)
                print(
                    'epoch: {}, episode: {} ,loss: {:.4f},acc: {:.4f}'.format(
                        epoch, episode, loss.item(), acc))

        val_acc = []
        pipeline.eval()
        for episode, batch in enumerate(val_loader, 0):
            task = batch[0].view(opts.n_way * (opts.shot_k + opts.query_k), 3,
                                 84, 84)
            loss, acc = pipeline(task.to(device), opts.n_way)
            val_acc.append(acc)

        m, h = mean_confidence_interval(val_acc)
        writer.add_scalar("val_acc", m, epoch * 100)
        print('VAL set  acc: {:.4f}, h: {:.4f}'.format(m, h))
        if epoch % (opts.epoch // 20) == 0:
            torch.save(pipeline.encoder.state_dict(),
                       osp.join(opts.name, 'epoch_{}.pth'.format(epoch)))
        if m > max_val_acc:
            max_val_acc = m
            torch.save(pipeline.encoder.state_dict(),
                       osp.join(opts.name, 'max_acc.pth'))
        pipeline.train()
Exemplo n.º 23
0
def main():

    sal_map_type = "GuidedBackprop_maxlogit"
    # sal_map_type = "PlainSaliency_maxlogit"
    data_dir = "../VGGImagenet/data_imagenet"
    save_dir = "results/10222017/convnet"

    # TODO: extend this part to a list

    image_name = 'tabby'

    n_labels = 10

    n_input = 224

    layers = [
        'conv1_1', 'conv1_2', 'pool1', 'conv2_1', 'conv2_2', 'pool2',
        'conv3_1', 'conv3_2', 'conv3_3', 'pool3', 'conv4_1', 'conv4_2',
        'conv4_3', 'pool4', 'conv5_1', 'conv5_2', 'conv5_3', 'pool5', 'fc1',
        'fc2', 'fc3'
    ]

    fns = []
    image_list = []
    label_list = []

    # load in the original image and its adversarial examples
    for image_path in glob.glob(
            os.path.join(data_dir, '{}.png'.format(image_name))):
        fns.append(os.path.basename(image_path).split('.')[0])
        image = imread(image_path, mode='RGB')
        image = imresize(image, (n_input, n_input)).astype(np.float32)
        image_list.append(image)
        onehot_label = np.array(
            [1 if i == image_dict[image_name] else 0 for i in range(n_labels)])
        label_list.append(onehot_label)

    batch_img = np.array(image_list)
    batch_label = np.array(label_list)

    batch_size = batch_img.shape[0]

    # tf session
    sess = tf.Session()

    # construct the graph based on the gradient type we want
    # plain relu vs guidedrelu
    if sal_map_type.split('_')[0] == 'GuidedBackprop':
        eval_graph = tf.get_default_graph()
        with eval_graph.gradient_override_map({'Relu': 'GuidedRelu'}):
            conv_model = Convnet(sess)

    elif sal_map_type.split('_')[0] == 'NGuidedBackprop':
        eval_graph = tf.get_default_graph()
        with eval_graph.gradient_override_map({'Relu': 'NGuidedRelu'}):
            # load the vgg graph
            # plain_init = true -> load the graph with random weights
            # plain_init = false -> load the graph with pre-trained weights
            conv_model = Convnet(sess)

    elif sal_map_type.split('_')[0] == 'PlainSaliency':
        # load the vgg graph
        # plain_init = true -> load the graph with random weights
        # plain_init = false -> load the graph with pre-trained weights
        conv_model = Convnet(sess)

    else:
        raise Exception("Unknown saliency_map type - 1")

    # --------------------------------------------------------------------------
    # Visualize grad-camp and its adversarial examples
    # --------------------------------------------------------------------------
    # Get last convolutional layer gradient for generating gradCAM visualization
    target_conv_layer = conv_model.convnet_out
    if sal_map_type.split('_')[1] == "cost":
        conv_grad = tf.gradients(conv_model.cost, target_conv_layer)[0]
    elif sal_map_type.split('_')[1] == 'maxlogit':
        conv_grad = tf.gradients(conv_model.maxlogit, target_conv_layer)[0]
    elif sal_map_type.split('_')[1] == 'randlogit':
        conv_grad = tf.gradients(conv_model.logits[0], target_conv_layer)[0]
        # conv_grad = tf.gradients(conv_model.logits[random.randint(0, 999)], target_conv_layer)[0]
    else:
        raise Exception("Unknown saliency_map type - 2")

    # normalization
    conv_grad_norm = tf.div(conv_grad, tf.norm(conv_grad) + tf.constant(1e-5))

    # saliency gradient to input layer
    if sal_map_type.split('_')[1] == "cost":
        sal_map = tf.gradients(conv_model.cost, conv_model.imgs)[0]
    elif sal_map_type.split('_')[1] == 'maxlogit':
        sal_map = tf.gradients(conv_model.maxlogit, conv_model.imgs)[0]
    elif sal_map_type.split('_')[1] == 'randlogit':
        sal_map = tf.gradients(conv_model.logits[0], conv_model.imgs)[0]
        # sal_map = tf.gradients(conv_model.logits[random.randint(0, 999)], conv_model.imgs)[0]
    else:
        raise Exception("Unknown saliency_map type - 2")

    # predict
    probs = sess.run(conv_model.probs,
                     feed_dict={conv_model.images: batch_img})

    # sal_map and conv_grad
    sal_map_val, target_conv_layer_val, conv_grad_norm_val =\
        sess.run([sal_map, target_conv_layer, conv_grad_norm],
                 feed_dict={conv_model.images: batch_img, conv_model.labels: batch_label})

    for idx in range(batch_size):
        print_prob(probs[idx])
        visualize(batch_img[idx], target_conv_layer_val[idx],
                  conv_grad_norm_val[idx], sal_map_val[idx], sal_map_type,
                  save_dir, fns[idx], probs[idx])
Exemplo n.º 24
0
        else:
            params.stop_epoch = 600  # default

    train_few_shot_params = dict(n_way=params.train_n_way,
                                 n_support=params.n_shot)
    base_datamgr = SetDataManager(image_size,
                                  n_query=params.query,
                                  **train_few_shot_params)
    base_loader = base_datamgr.get_data_loader(base_file, aug=params.train_aug)

    test_few_shot_params = dict(n_way=params.test_n_way,
                                n_support=params.n_shot)
    val_datamgr = SetDataManager(image_size,
                                 n_query=params.query,
                                 **test_few_shot_params)
    val_loader = val_datamgr.get_data_loader(val_file, aug=False)

    model = Convnet()
    optimization = 'Adam'

    params.checkpoint_dir = '%s/checkpoints/%s_%dway_%dshot' % (
        configs.save_dir, params.dataset, params.train_n_way, params.n_shot)
    if params.train_aug:
        params.checkpoint_dir += '_aug'
    ensure_path(params.checkpoint_dir)

    start_epoch = params.start_epoch
    stop_epoch = params.stop_epoch

    model = train(base_loader, val_loader, model, optimization, start_epoch,
                  stop_epoch, params)
    parser.add_argument('--way', type=int, default=5)
    parser.add_argument('--shot', type=int, default=1)
    parser.add_argument('--query', type=int, default=30)
    parser.add_argument('--folds', type=int, default=2)
    args = parser.parse_args()
    pprint(vars(args))

    set_gpu(args.gpu)

    dataset = MiniImageNet('test')
    sampler = CategoriesSampler(dataset.label,
                                args.batch, args.way, args.folds * args.shot + args.query)
    loader = DataLoader(dataset, batch_sampler=sampler,
                        num_workers=8, pin_memory=True)

    model = Convnet().cuda()
    model.load_state_dict(torch.load(args.load))
    model.eval()

    ave_acc = Averager()
    s_label = torch.arange(args.train_way).repeat(args.shot).view(args.shot * args.train_way)
    s_onehot = torch.zeros(s_label.size(0), 20)
    s_onehot = s_onehot.scatter_(1, s_label.unsqueeze(dim=1), 1).cuda()

    for i, batch in enumerate(loader, 1):
        data, _ = [_.cuda() for _ in batch]
        k = args.way * args.shot
        data_shot, meta_support, data_query = data[:k], data[k:2*k], data[2*k:]

        #p = inter_fold(model, args, data_shot)
Exemplo n.º 26
0
class Agent():
    def __init__(self, memory_size=1000, crop_size=192, z_size=32, lr=LR):
        self.dqn, self.target = Convnet().cuda(), Convnet().cuda()
        self.crop_size = crop_size
        self.z_size = z_size
        self.memory_size = memory_size
        self.mb_pool = np.zeros([memory_size, crop_size, crop_size, z_size])
        self.maft_pool = np.zeros([memory_size, crop_size, crop_size, z_size])
        self.reward_pool = np.zeros([memory_size, 1])
        self.action_pool = np.zeros([memory_size, 1])
        self.count = 0
        self.learn_step_counter = 0
        self.optimizer = torch.optim.Adam(self.dqn.parameters(), lr=lr)
        self.loss_func = nn.MSELoss()

    def setFixed(self, fixed):
        self.fixed = fixed

    def chooseAction(self, m):
        m = torch.unsqueeze(torch.Tensor(m).cuda().float(), 0)
        # input only one sample
        if np.random.uniform() < EPSILON:  # greedy
            Q_pre = self.dqn(self.fixed, m)
            action = torch.argmax(Q_pre)[1].cpu().numpy()
        else:  # random
            action = np.random.randint(0, N_ACTIONS)
        return action

    def saveState(self, m_bf, a, reward, m_aft):
        if self.count == self.memory_size:
            self.flushMem()
        self.mb_pool[self.count, ...] = m_bf
        self.reward_pool[self.count, ...] = reward
        self.maft_pool[self.count, ...] = m_aft
        self.action_pool[self.count, ...] = a
        self.count += 1

    def flushMem(self):
        self.count = 0

    def saveCKPT(self, path):
        torch.save(self.dqn.state_dict(), path)

    def learnDQN(self):
        if self.learn_step_counter % TARGET_REPLACE_ITER == 0:
            self.target.load_state_dict(self.dqn.state_dict())
        self.learn_step_counter += 1
        # sample batch transitions
        sample_index = np.random.choice(self.memory_size, BATCH_SIZE)
        b_memory = self.mb_pool[sample_index]
        aft_memory = self.maft_pool[sample_index]
        r_memory = self.reward_pool[sample_index]
        a_memory = self.action_pool[sample_index]

        b_s = torch.Tensor(b_memory).float().cuda()
        b_a = torch.Tensor(a_memory.astype(int)).long().cuda()
        b_r = torch.Tensor(r_memory).float().cuda()
        b_aft = torch.Tensor(aft_memory).float().cuda()

        # q_eval w.r.t the action in experience
        q_eval = self.dqn(b_s).gather(1, b_a)  # shape (batch, 1)
        q_next = self.target(
            b_aft).detach()  # detach from graph, don't backpropagate
        q_target = b_r + GAMMA * q_next.max(1)[0].view(BATCH_SIZE,
                                                       1)  # shape (batch, 1)
        loss = self.loss_func(q_eval, q_target)

        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()