Exemplo n.º 1
0
def fehner_coefficient(x, y):
    """
    Value of fehner coefficient
    :param x: list of dependent variable
    :param y: list of independent variable
    :return: value of fehner coefficient
    """
    if ch.check_list(x) and ch.check_list(y):
        if ch.check_equality(x, y):
            xa = avg.average(x)
            ya = avg.average(y)

            xlist = []
            ylist = []
            resulter = []

            for xi in x:
                if xi <= xa:
                    xlist.append("-")
                else:
                    xlist.append("+")
            for yi in y:
                if yi <= ya:
                    ylist.append("-")
                else:
                    ylist.append("+")

            for xi, yi in zip(xlist, ylist):
                if xi == yi:
                    resulter.append("A")
                else:
                    resulter.append("B")
            return (resulter.count("A") - resulter.count("B")) / (
                resulter.count("A") + resulter.count("B"))
Exemplo n.º 2
0
def covariation(x, y):
    """Find covariation coefficient
    :param x: list of dependent variable
    :param y: list of independent variable
    :return: value of covariation coefficient
    """
    if ch.check_list(x) and ch.check_list(y):
        if ch.check_equality(x, y):
            return avg.sample_average(x, y) - (avg.average(x) * avg.average(y))
Exemplo n.º 3
0
def elastic_coefficient(x, y):
    """
    Finds elastic coefficient
    :param x: list of dependent variable
    :param y: list of independent variable
    :return: value of elastic coefficient
    """
    if ch.check_list(x) and ch.check_list(y):
        if ch.check_equality(x, y):
            return regression.pair_regression(
                x, y)['b'] * (avg.average(x) / avg.average(y))
Exemplo n.º 4
0
def confidence_interval(data):
    """
    Calculate confidence interval for mean
    :param data: list of int or float values
    :return: list with confidence interval
    """
    if ch.check_list(data):
        return [
            avg.average(data) - (1.96 * SEM(data)),
            avg.average(data) + (1.96 * SEM(data))
        ]
Exemplo n.º 5
0
def closure_coefficient(x, y):
    """Find closure indicator
    :param x: list of dependent variable
    :param y: list of independent variable
    :return: value of closure indicator
    """
    if ch.check_list(x) and ch.check_list(y):
        if ch.check_equality(x, y):
            numerator = avg.sample_average(
                x, y) - (avg.average(x) * avg.average(y))
            denumerator = vars.sample_deviation(x) * vars.sample_deviation(y)
            return numerator / denumerator
Exemplo n.º 6
0
def sf(x, y, p=2):
    """
    Find value sum for factor dispersion
    :param x: list of dependent variable
    :param y: list of independent variable
    :param p: number of factors
    :return: value of sum for factor dispersion
    """
    if ch.check_list(x) and ch.check_list(y):
        if ch.check_equality(x, y):
            xavg = avg.average(x)
            yavg = avg.average(y)
            xyavg = (xavg + yavg) / 2
            return len(x) * (xavg**2 + yavg**2 - p * (xyavg**2))
Exemplo n.º 7
0
def oscillation_coefficient(data):
    """
    Calculate coefficient of oscillation
    :param data: list of int or float values
    :return: oscillation coefficient
    """
    if ch.check_list(data):
        R = base.range(data)
        x = avg.average(data)
        return R / x
Exemplo n.º 8
0
def coefficient_of_variation(data):
    """
    Calculate coefficient of variation
    :param data: list of int or float values
    :return: variation coefficient
    """
    if ch.check_list(data):
        b = vars.standard_deviation(data)
        x = avg.average(data)
        return b / x
Exemplo n.º 9
0
def relative_linear_deviation(data):
    """
    Calculate linear deviation coefficient
    :param data: list of int or float values
    :return: relative linear deviation coefficient
    """
    if ch.check_list(data):
        d = vars.mean_linear_deviation(data)
        x = avg.average(data)
        return d / x
Exemplo n.º 10
0
def pearson_correltaion(x, y):
    """Finds the Pearson correlation coefficient.
    :param x: list of dependent variable
    :param y: list of independent variable
    :return: value with value of correlation coefficient
    """
    if ch.check_list(x) and ch.check_list(y):
        if ch.check_equality(x, y):
            avg_x = avg.average(x)
            avg_y = avg.average(y)
            diffprod = 0
            xdiff2 = 0
            ydiff2 = 0
            for idx in range(len(x)):
                xdiff = x[idx] - avg_x
                ydiff = y[idx] - avg_y
                diffprod += xdiff * ydiff
                xdiff2 += xdiff * xdiff
                ydiff2 += ydiff * ydiff
            return diffprod / np.sqrt(xdiff2 * ydiff2)
Exemplo n.º 11
0
def total_amount(x, y, p=2):
    """
    Find value total amount
    :param x: list of dependent variable
    :param y: list of independent variable
    :param p: number of factors
    :return: value of total amount
    """
    if ch.check_list(x) and ch.check_list(y):
        if ch.check_equality(x, y):
            x2 = []
            y2 = []
            xavg = avg.average(x)
            yavg = avg.average(y)

            xyavg = (xavg + yavg) / 2
            for xi, yi in zip(x, y):
                x2.append(xi * xi)
                y2.append(yi * yi)
            return sum(x2) + sum(y2) - len(x) * p * (xyavg * xyavg)
Exemplo n.º 12
0
def sample_dispersion(data):
    """
    Calculate sample dispersion 
    :param data: list of int or float values
    :return: S^2
    """
    if ch.check_list(data):
        n = len(data)
        d = 0
        for element in data:
            d += element**2
        return (d / n) - (avg.average(data)**2)
Exemplo n.º 13
0
def moment(data, degree):
    """
    Calculate central moments
    :param data: list of int or float values
    :return: value of central moment
    """
    if ch.check_list(data) and ch.check_number(degree):
        mean = avg.average(data)
        M = 0
        for element in data:
            M += (element - mean)**degree
        return M / len(data)
Exemplo n.º 14
0
def mean_linear_deviation(data):
    """
    Calculate simple linear deviation
    :param data: list of int or float values
    :return: linear deviation
    """
    if ch.check_list(data):
        mean = avg.average(data)
        n = len(data)
        d = 0
        for element in data:
            d += np.fabs(element - mean)
        return d / n
Exemplo n.º 15
0
def unbiased_variance_estimate(data):
    """
    Calculate dispersion variance 
    :param data: list of int or float values
    :return: dict with variance estimate and sqrt of dispersion variance
    """
    if ch.check_list(data):
        mean = avg.average(data)
        n = len(data)
        d = 0
        for element in data:
            d += (element - mean)**2
        return {'S2': d / (n - 1), 's': np.sqrt(d / (n - 1))}
Exemplo n.º 16
0
def dispersion(data):
    """
    Calculate dispersion 
    :param data: list of int or float values
    :return: (sigma^2)
    """
    if ch.check_list(data):
        mean = avg.average(data)
        n = len(data)
        d = 0
        for element in data:
            d += (element - mean)**2
        return d / n