Exemplo n.º 1
0
def good_plan(request):
    try:
        # cnn = CNN({'model_name': 'good_plan_50', 'img_rows': 50, 'img_cols': 50})
        cnn = CNN({'model_name': 'good_plan_50'}, True)
        cnn.train_model(40)
    except Exception as e:
        print e
        return Response({'msg': e.message}, status=status.HTTP_400_BAD_REQUEST)
    print 'finish good plan'
    return Response({}, status=status.HTTP_200_OK)
Exemplo n.º 2
0
def add_model(request):
    cnn = CNN(request.POST)
    success, msg = cnn_manager.add_model(cnn)
    if success:
        return Response({'msg': msg}, status=status.HTTP_200_OK)
    else:
        return Response({'msg': msg}, status=status.HTTP_400_BAD_REQUEST)
def compute_logits(inputs, batch_size=-1):
    #
    # logits.append(FullyConnected.build_model(logits[-1], 'fullyconnected'))
    #
    logits = [inputs]
    inputs_expanded = tf.expand_dims(inputs, 3)
    logits.append(CNN.build_model(inputs_expanded, config.encoder('cnn')))
    temp_shape = logits[-1].get_shape().as_list()

    logits.append(
        tf.reshape(
            logits[-1],
            shape=[batch_size, temp_shape[1], temp_shape[2] * temp_shape[3]]))

    # logits.append(BottleNeck.build_model(logits[-1], config.encoder('bottleneck')))
    # temp_shape = logits[-1].get_shape().as_list()
    # logits.append(tf.reshape(logits[-1], shape=[batch_size, temp_shape[1], -1]))

    logits.append(
        BiDirectionLSTM.build_model(logits[-1],
                                    config.encoder('bidirection_lstm')))
    logits.append(
        tf.reshape(logits[-1], shape=[-1, logits[-1].get_shape()[-1]]))
    logits.append(
        FullyConnected.build_model(logits[-1],
                                   config.encoder('fullyconnected')))
    logits.append(tf.reshape(logits[-1], shape=[batch_size, -1, 72]))

    return logits[-1], tf.fill([batch_size], temp_shape[1])
Exemplo n.º 4
0
 def test_train_model(self):
     # cnn = CNN({'model_name': 'split_cases_50_50_2_layer', 'img_rows': 200, 'img_cols': 200})
     # cnn = CNN({'model_name': 'model_with_gabor2'}, True)
     # cnn = CNN({'model_name': 'split_cases_dropout_50', 'img_rows': 200, 'img_cols': 200})
     # cnn = CNN({'model_name': 'test_split_case'}, True)
     # cnn = CNN({'model_name': 'test_split_case', 'img_rows': 200, 'img_cols': 200})
     # cnn = CNN({'model_name': 'third_model', 'img_rows': 200, 'img_cols': 200})
     cnn = CNN({'model_name': 'kernal_5X5'}, True)
     # cnn = CNN({'model_name': 'second_model'}, True)
     # cnn = CNN({'model_name': 'naor_first_model'}, True)
     # cnn._calculate_confusion_matrix()
     # self.assertEqual(cnn.tp, 396)
     # self.assertEqual(cnn.tn, 970)
     # self.assertEqual(cnn.fp, 6)
     # self.assertEqual(cnn.fn, 61)
     cnn.train_model(n_epoch=1)
Exemplo n.º 5
0
 def test(self):
     cnn = CNN({'model_name': 'e11'}, True)
     cnn.sigma = 0.5  # >0
     cnn.gamma = 0.5  # 0-1
     cnn.theta = 1
     cnn.lambd = 0.5
     cnn.psi = 1.57
     cg = cnn.get_custom_gabor()
     ker = cg((3, 3, 3, 3))
     print ker.container
Exemplo n.º 6
0
 def load_models(self):
     models_names = set()
     file_list = os.listdir(os.path.join(ROOT_DIR, 'cnn_models'))
     for _file in file_list:
         model_name = _file.split('.')[0]
         models_names.add(model_name)
     for i in models_names:
         print 'load model %s' % i
         cnn = CNN({'model_name': i}, True)
         self.models[i] = cnn
Exemplo n.º 7
0
 def test_train_model(self):
     _con_mat = [[25, 25, 25, 25], [30, 20, 30, 20], [50, 0, 0, 50]]
     model_name = 'kernal_6X6'
     cnn = CNN({
         'model_name': model_name,
         'img_rows': 75,
         'img_cols': 75,
         'kernel_size': (8, 8)
     })
     cnn.con_mat_train = _con_mat
     cnn.con_mat_val = _con_mat
     cnn._save_only_best()
     self.assertTrue(
         os.path.exists(os.path.join(cnn.model_path + '.h5(weights)')))
     self.assertTrue(os.path.exists(os.path.join(cnn.model_path + '.json')))
     cnn.train_model(1)
     del cnn
     cnn = CNN({'model_name': model_name}, True)
     self.assertEqual(_con_mat, cnn.con_mat_train)
     self.assertEqual(_con_mat, cnn.con_mat_val)
Exemplo n.º 8
0
 def test_add_model(self):
     cnn_manager = CNNManager()
     self.expected_file = os.path.join(
         ROOT_DIR, 'cnn_models',
         'cpu_cnn_model_%s' % (cnn_manager.last_index + 1))
     self.test_cnn = CNN(img_rows=300)
     cnn_manager.add_model(self.test_cnn)
     self.assertTrue(os.path.exists(self.expected_file + '.h5'))
     self.assertTrue(os.path.exists(self.expected_file + '.json'))
     cnn_manager.remove_model(self.test_cnn)
     self.assertFalse(os.path.exists(self.expected_file + '.h5'))
     self.assertFalse(os.path.exists(self.expected_file + '.json'))
Exemplo n.º 9
0
def alg_train_new(model_name, p_keep_conv=1.0, p_keep_hidden=1.0,
                  batch_size=512, test_size=256, epoch_time=3):
    """
    :param model_name:
    :param p_keep_conv:
    :param p_keep_hidden:
    :param batch_size:
    :param test_size:
    :param epoch_time
    :return:
    """
    print('initializing CNN model')
    cnn = CNN(p_keep_conv=p_keep_conv, p_keep_hidden=p_keep_hidden,
              batch_size=batch_size, test_size=test_size, epoch_time=epoch_time)
    print('CNN has been initialized')

    # print('load mnist done')
    print('load training data')
    X, y = get_new_data('F:/num_ocr')
    X = X / 255.0

    X = X.reshape(-1, 48, 48, 1)
    # X = X.reshape(-1, 28, 28, 1)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.05)
    print('load training data done')
    print('-' * 30, 'training', '-' * 30)
    import time
    tmp_time = time.time()
    cnn.fit_new(X_train, y_train, X_test, y_test)
    print('total time cost:', time.time() - tmp_time)
    cnn.save(model_name)
Exemplo n.º 10
0
def random_plan(request):
    while True:
        conf = get_random_conf()
        cnn = CNN(conf)
        cnn.train_model(1)
        if 0 in cnn.con_mat_val[-1]:
            continue
        else:
            print 'we find normal model'
            cnn.train_model(10)
Exemplo n.º 11
0
 def test_load_evaluate(self):
     cnn = CNN({'model_name': 'model1'}, _reload=True)
     cnn.load_data_set()
     cnn._calculate_confusion_matrix()
Exemplo n.º 12
0
            plt.imshow(feature.reshape(k, shp[0], shp[1])[0], interpolation='None', cmap='binary')
        plt.show()

    def dump2file(cnn, filename):
        global datasets_for_abstract
        x = datasets_for_abstract[0][0]
        y = datasets_for_abstract[0][1].eval()

        features = cnn.get_feature(x)

        print features.shape
        print y.shape
        cPickle.dump((features, y), open(filename, 'wb'))
        

    cnn = CNN(dim_in = 1, size_in = (28, 28), nkerns = [(4, (2, 2), (1, 1)), (2, (3, 3), (2, 2))])
    #fit(self, lossf, datasets, batch_size = 500, n_epochs = 200, learning_rate = 0.01):

#    examinate(cnn)
#    dump2file(cnn, './features/1_random.feature')

    examinate(cnn)
    cnn.set_lossf(core.loss_functions.TEST_LOSS_F)
    cnn.fit(datasets, batch_size = 200, n_epochs = 100, learning_rate = 0.0001)
    examinate(cnn)

#    dump2file(cnn, './features/1_trained.feature')



Exemplo n.º 13
0
 def test_create_model_svg(self):
     cnn = CNN({'model_name': 'naor_first_model'}, True)
     cnn.create_model_svg()
Exemplo n.º 14
0
    def dump2file(cnn0, cnn1, filename):
        global datasets_for_abstract
        x0 = datasets_for_abstract0[0]
        x1 = datasets_for_abstract1[0]
        y = datasets_for_abstract0[1].eval()

        features0 = cnn1.get_feature(x0)
        features1 = cnn2.get_feature(x1)
        #features = np.concatenate([features0, features1], 1)
        features = features0 - features1  

        cPickle.dump((features, y), open(filename, 'wb'))
        

    cnn1 = CNN(dim_in = 1, size_in = (32, 32), nkerns = [(8, (2, 2), (1, 1)), (6, (3, 3), (2, 2))])
    cnn2 = CNN(dim_in = 1, size_in = (32, 32), nkerns = [(8, (2, 2), (1, 1)), (6, (3, 3), (2, 2))])
    #fit(self, lossf, datasets, batch_size = 500, n_epochs = 200, learning_rate = 0.01):

#    examinate(cnn)

    examinate(cnn1, cnn2)
    dump2file(cnn1, cnn2, './features/1_random.feature')

    for i in range(4):
        print 'The %03dth updating' % i
        loss = core.loss_functions.lossf3(cnn1, cnn2.get_feature(datasets1[0][0]))
        cnn1.set_lossf(loss)
        cnn1.fit(datasets0, batch_size = 50, n_epochs = 5, learning_rate = 0.00001, test_model_on = 0)

        loss = core.loss_functions.lossf3(cnn2, cnn1.get_feature(datasets1[0][0]))
Exemplo n.º 15
0
 def test(self):
     cnn = CNN({'model_name': 'model7(new_aug)'}, True)
     cnn.load_datasets()
     cnn._calculate_confusion_matrix()
Exemplo n.º 16
0
def full_plan(request):
    try:
        item = 1
        for split_cases in ['True', 'False']:
            for dropout in [0.25, 0.5]:
                for activation_function in ['softmax', 'sigmoid']:
                    for img_size in [(75, 75), (50, 50)]:
                        for nb_filters in [32, 64]:
                            for kernel_size in [5, 6, 7, 8, 9, 10]:
                                for pool_size in [2, 4, 6, 8]:
                                    for batch_size in [32, 64, 128]:
                                        for sigma in [180, 90, 30]:
                                            for theta in [45, 90, 135]:
                                                for lammbd in [45, 90, 135]:
                                                    for gamma in [
                                                            0.3, 0.5, 0.7, 0.9
                                                    ]:
                                                        for psi in [
                                                                0.2, 0.5, 0.8
                                                        ]:
                                                            try:
                                                                item_path = os.path.join(
                                                                    ROOT_DIR,
                                                                    'cnn_models',
                                                                    'item%s.json'
                                                                    % item)
                                                                if os.path.exists(
                                                                        item_path
                                                                ):
                                                                    item += 1
                                                                    break
                                                                params = {}
                                                                params[
                                                                    'model_name'] = "item%s" % item
                                                                item += 1
                                                                params[
                                                                    'split_cases'] = split_cases
                                                                params[
                                                                    'img_rows'] = img_size[
                                                                        0]
                                                                params[
                                                                    'img_cols'] = img_size[
                                                                        1]
                                                                params[
                                                                    'batch_size'] = batch_size
                                                                params[
                                                                    'nb_filters'] = nb_filters
                                                                params[
                                                                    'dropout'] = dropout
                                                                params[
                                                                    'activation_function'] = activation_function
                                                                params[
                                                                    'pool_size'] = pool_size
                                                                params[
                                                                    'kernel_size'] = kernel_size
                                                                params[
                                                                    'sigma'] = sigma
                                                                params[
                                                                    'theta'] = theta
                                                                params[
                                                                    'lammbd'] = lammbd
                                                                params[
                                                                    'gamma'] = gamma
                                                                params[
                                                                    'psi'] = psi

                                                                cnn = CNN(
                                                                    params)
                                                                cnn.train_model(
                                                                    150)
                                                            except Exception as e:
                                                                print e
    except Exception as e:
        print e
        return Response({'msg': e.message}, status=status.HTTP_400_BAD_REQUEST)
    print 'finish all plan'
    return Response({}, status=status.HTTP_200_OK)
Exemplo n.º 17
0
            plt.imshow(feature.reshape(k, shp[0], shp[1])[0], interpolation='None', cmap='binary')
        plt.show()

    def dump2file(cnn, filename):
        global datasets_for_abstract
        x = datasets_for_abstract[0]
        y = datasets_for_abstract[1].eval()

        features = cnn.get_feature(x)

        print features.shape
        print y.shape
        cPickle.dump((features, y), open(filename, 'wb'))
        

    cnn = CNN(dim_in = 2, size_in = (32, 32), nkerns = [(8, (2, 2), (1, 1)), (6, (3, 3), (2, 2))])
    #fit(self, lossf, datasets, batch_size = 500, n_epochs = 200, learning_rate = 0.01):

#    examinate(cnn)
    dump2file(cnn, './features/1_random.feature')

    examinate(cnn)
    cnn.fit(core.loss_functions.TEST_LOSS_F, datasets, batch_size = 50, n_epochs = 100, learning_rate = 0.00005)
    examinate(cnn)

    dump2file(cnn, './features/1_trained.feature')




Exemplo n.º 18
0
import numpy as np
import cv2
from core.cnn import CNN
from server.server_tools import *
from gevent.pywsgi import WSGIServer
from multiprocessing import cpu_count, Process
from tornado.wsgi import WSGIContainer
from tornado.httpserver import HTTPServer
from tornado.ioloop import IOLoop
import time
import base64
from flask import Flask, jsonify, request
from flask_cors import CORS
import traceback

cnn = CNN()
cnn.load_session('../model/Test_CNN_Model.ckpt')
print 'load model done'

app = Flask(__name__)

CORS(app, resource=r'/*')


@app.route('/ai/cv/numreco', methods=['POST'])
def num_reco():
    """
    :return:
    """
    result = []
    data = []