Exemplo n.º 1
0
 def setUp(self):
     self.series_maker = NetCDFSeriesMaker(system_config={},
                                           max_parallelism=1)
     self.default_varnames = {
         'time': 'time',
         'x': 'x',
         'y': 'y',
         'scen': None
     }
     self.default_dimensions = ['time', 'x', 'y', 'scen']
     if not os.path.exists('test/data/.tmp'):
         os.makedirs('test/data/.tmp')
     self.fake_forecast = DotDict({
         'paths': {
             'weather_grid_path': 'test/data/.tmp'
         },
         'configuration': {
             'netcdf_variables': self.default_varnames,
             'grid_resolution': 10
         }
     })
     self.test_location = DotDict({
         'netcdf_x': 5127500,
         'netcdf_y': 5907500,
         'x_coord': -64.178711,
         'y_coord': -36.910294,
         'weather_station': 1,
         'name': 'Zone 1'
     })
Exemplo n.º 2
0
    def test_updateDict(self):
        d = DotDict()

        d.prop1 = 1
        d['prop2'] = 2

        self.assertEqual(d.prop1, d['prop1'])
        self.assertEqual(d['prop2'], 2)
        self.assertEqual(d.get('prop2'), d.prop2)
Exemplo n.º 3
0
 def public_view(self):
     view = DotDict(copy.copy(self.__dict__))
     del view['database']
     del view['database_config']
     del view['forecasts']
     del view['logger']
     del view['observer']
     del view['alias_dict']
     del view['jobs_lock']
     del view['system_config_yaml']
     del view['forecasts_files']
     del view['forecasts_loader']
     return view.to_json()
Exemplo n.º 4
0
    def public_view(self, forecasts_paths):
        view = DotDict(copy.deepcopy(self.__dict__))
        del view['results']
        del view['simulations']

        view['campaign_name'] = self.campaign_name
        view['forecast_date'] = self.forecast_date
        view['forecast_id'] = self.id

        if 'rainfall' in view:
            del view['rainfall']

        view['locations'] = []
        for loc_key, loc in self.locations.items():
            view['locations'].append(loc['name'])

        view['file_name'] = self.public_file_name(forecasts_paths)

        return view.to_json()
Exemplo n.º 5
0
    def __load_file__(self, forecast_file):
        forecasts = []
        try:
            forecast = DotDict(yaml.safe_load(open(forecast_file)))
            forecast['file_name'] = forecast_file

            weather_series = forecast['configuration']['weather_series']
            if weather_series not in self.weather_series_makers:
                raise RuntimeError('Weather series of type %s not supported.' %
                                   weather_series)

            forecast.configuration.weather_maker_class = self.weather_series_makers[
                weather_series]

            for loc_key in list(forecast['locations'].keys()):
                forecast['locations'][loc_key] = Location(
                    forecast['locations'][loc_key], forecast,
                    self.system_config)

            builder = ForecastBuilder(forecast, self.system_config)
            builder.replace_aliases(self.system_config.alias_dict)
            builder.inherit_config(self.system_config.system_config_yaml)
            # Build and append forecasts.
            for f in builder.build():
                forecasts.append(f)
                self.system_config.weather_stations_ids.update(
                    set([
                        loc['weather_station']
                        for loc in list(f.locations.values())
                    ]))
            self.system_config.forecasts[forecast_file] = forecasts
            logging.getLogger().info('Loaded %d forecasts from file "%s".' %
                                     (len(forecasts), forecast_file))
            return True
        except Exception:
            logging.getLogger().error(
                "Skipping forecast file '%s'. Reason: %s." %
                (forecast_file, log_format_exception()))
            return False
Exemplo n.º 6
0
    def init_from_yaml(self, yaml):
        if 'name' not in yaml:
            yaml['name'] = filename_without_ext(yaml['file_name'])

        if 'forecast_date' not in yaml:
            # If there's no forecast date defined, we explicitly define it as None.
            yaml['forecast_date'] = None

        if 'results' not in yaml:
            raise RuntimeError(
                'Missing results property in forecast file %s.' %
                yaml['file_name'])
            # yaml['results'] = DotDict({'cycle': ['HWAM'], 'daily': []})

        if 'daily' not in yaml['results']:
            yaml['results']['daily'] = []

        if 'cycle' not in yaml['results']:
            yaml['results']['cycle'] = []

        if len(yaml['results']['cycle']) == 0 and len(
                yaml['results']['daily']) == 0:
            raise RuntimeError(
                'No expected results variables were provided in forecast file %s.'
                % yaml['file_name'])

        # Keys that belong to simulation objects and must be deleted from a Forecast object.
        simulation_keys = [
            'initial_conditions', 'agronomic_management',
            'site_characteristics'
        ]
        for key in simulation_keys:
            if key in yaml:
                del yaml[key]

        self.__dict__.update(DotDict(yaml))
Exemplo n.º 7
0
    def build(self):
        # type(self.forecast_file) = DotDict
        forecast = self.forecast_file

        forecast_list = []

        simulations = DotDict()

        # Join site_characteristics, initial_conditions and agronomic_managements by location.
        joined_locations = DotDict()
        for loc_key, values in forecast['locations'].items():
            joined_loc = DotDict()

            if loc_key not in forecast.site_characteristics:
                raise RuntimeError('Missing site characteristics for location "%s".' % loc_key)

            joined_loc.update(values)
            joined_loc.soils = forecast.site_characteristics[loc_key]

            if loc_key not in forecast.initial_conditions:
                raise RuntimeError('Missing initial conditions for location "%s".' % loc_key)

            if loc_key not in forecast.agronomic_management:
                raise RuntimeError('Missing agronomic management for location "%s".' % loc_key)

            for soil_key in joined_loc.soils:
                if soil_key not in forecast.initial_conditions[loc_key]:
                    raise RuntimeError('Missing initial conditions for soil "%s" at location "%s".' %
                                       (soil_key, loc_key))

                joined_loc.soils[soil_key]['initial_conditions'] = forecast.initial_conditions[loc_key][soil_key]

                if soil_key not in forecast.agronomic_management[loc_key]:
                    raise RuntimeError('Missing agronomic management for soil "%s" at location "%s".' %
                                       (soil_key, loc_key))

                joined_loc.soils[soil_key]['agonomic_management'] = forecast.agronomic_management[loc_key][soil_key]

            joined_locations[loc_key] = joined_loc

        # Create simulations based on complex fields (those that allow more than one value).
        for loc_key, loc in joined_locations.items():
            simulations[loc_key] = []

            # Unwind managements.
            for soil_key, soil in loc.soils.items():
                for mgmt_key, management in soil.agonomic_management.items():
                    sim = DotDict({
                        'location': copy.deepcopy(loc),
                        'soil': copy.deepcopy(soil),
                        'management': copy.deepcopy(management),
                        'initial_conditions': copy.deepcopy(soil['initial_conditions'])
                    })
                    del sim['soil']['agonomic_management']
                    del sim['soil']['initial_conditions']
                    del sim['location']['soils']

                    sim.name = loc.name
                    sim.name += ' - Soil: "%s"' % soil.id

                    if 'mgmt_name' not in management:
                        management.mgmt_name = mgmt_key

                    sim.name += ' - Mgmt: "%s"' % management.mgmt_name

                    ic_water_var = None
                    ic_water_var_content = None

                    if 'ich20_frac' in sim.initial_conditions:
                        ic_water_var = 'ich20_frac'
                        ic_water_var_content = sim.initial_conditions['ich20_frac']

                    if 'frac_full' in sim.initial_conditions:
                        if ic_water_var:
                            raise RuntimeError("Water content can't be defined with two variables.")
                        ic_water_var = 'frac_full'
                        ic_water_var_content = sim.initial_conditions['frac_full']

                    if not ic_water_var_content:
                        raise RuntimeError("Water initial conditions can't be None")

                    # Unwind initial conditions.
                    if isinstance(ic_water_var_content, DotDict):
                        for ic_name, ic_values in ic_water_var_content.items():
                            new_sim = copy.deepcopy(sim)
                            new_sim.initial_conditions[ic_water_var] = ic_values
                            new_sim.name += ' - IC: "%s=%s"' % (ic_water_var, ic_name)
                            new_sim.water_content = ic_name

                            if self.simulation_schema:
                                validate(json.loads(new_sim.to_json()), schema=self.simulation_schema)
                            simulations[loc_key].append(Simulation(new_sim, forecast.crop_type))
                    else:
                        if self.simulation_schema:
                            validate(json.loads(sim.to_json()), schema=self.simulation_schema)
                        sim.water_content = ''
                        simulations[loc_key].append(Simulation(sim, forecast.crop_type))

        # Unwind dates and create a forecast for each different date.
        if ('forecast_date' in forecast) and isinstance(forecast['forecast_date'], list):
            for date in forecast['forecast_date']:
                sims = copy.deepcopy(simulations)

                if not isinstance(date, str):
                    raise RuntimeError('Forecast date must be a string, found: %s (%s).' % (type(date), date))

                f = Forecast(forecast, sims)
                f.forecast_date = date
                forecast_list.append(f)
        else:
            f = Forecast(forecast, simulations)
            forecast_list.append(f)

        return forecast_list
Exemplo n.º 8
0
 def __init__(self, system_config):
     self.system_config = system_config
     self.wth_db = None
     self.weather_stations_ids = set()
     self.wth_max_date = DotDict()
Exemplo n.º 9
0
    def load(config_object):
        # Load system configuration from the YAML file and update this object's dictionary to add the keys found
        # in the config file, allowing us to access them using the dot notation (eg. "config.temp_folder" instead of
        # "config.get('temp_folder')", though this is also supported.
        system_config_yaml = DotDict(
            yaml.safe_load(open(config_object.system_config_path)))

        if 'max_parallelism' in system_config_yaml:
            max_parallelism = system_config_yaml['max_parallelism']
            if (not isinstance(max_parallelism, int)) or (max_parallelism < 1):
                raise RuntimeError('Invalid max_parallelism value (%s).' %
                                   max_parallelism)

        config_object.system_config_yaml = system_config_yaml  # This will be used by forecasts to inherit the global config.
        # Update this class __dict__ property to add the properties defined in the config yaml.
        config_object.update(system_config_yaml)

        # Create the system's job syncing lock if it doesn't exist.
        if not config_object.jobs_lock:
            config_object.jobs_lock = JobsLock(
                max_parallel_tasks=config_object.max_parallelism)
        else:
            # Otherwise, just update the max concurrent parallel jobs. If we reinstantiate it we'll leave
            # every thread waiting for a lock permanently blocked.
            config_object.jobs_lock.max_concurrent_readers = config_object.max_parallelism

        # Load databases configurations and open connections.
        db_config = yaml.safe_load(open(config_object.databases_config_path))

        config_object['database_config'] = DotDict()
        config_object['database'] = DotDict()

        for db_conn, properties in list(db_config.items()):
            if 'type' not in properties:
                raise RuntimeError(
                    'Missing database type for database connection "%s".' %
                    db_conn)

            properties['name'] = db_conn

            if properties['type'] == 'postgresql':
                connection = DatabaseUtils.connect_postgresql(
                    properties, config_object.config_path)
            elif properties['type'] == 'mongodb':
                connection = DatabaseUtils.connect_mongodb(
                    properties, config_object.config_path)
            else:
                raise RuntimeError('Unsupported database type: "%s".' %
                                   properties['type'])

            # Store connection config dictionary and connection instance.
            config_object['database_config'][db_conn] = properties
            config_object.database[db_conn] = connection

        wth_db_checker = CheckWeatherDB(system_config=config_object)
        wth_db_checker.start()

        rinde_db_checker = CheckYieldDB(system_config=config_object)
        rinde_db_checker.start()

        config_object.alias_dict = None
        if config_object.alias_keys_path:
            config_object.alias_dict = yaml.load(open(
                config_object.alias_keys_path, 'r'),
                                                 Loader=yaml.FullLoader)

        # Load forecasts.
        if not config_object.forecasts:
            config_object.forecasts = {}

        forecast_file_list = listdir_fullpath(
            config_object.forecasts_path,
            onlyFiles=True,
            recursive=True,
            filter=(lambda x: x.endswith('yaml')))

        if not config_object.forecasts_files:
            config_object.forecasts_files = forecast_file_list
        else:
            # If this property was already initialized, find if there are new files.
            for forecast_file in forecast_file_list:
                # If this file was already added to the property, remove it from the list we'll return to the caller.
                if forecast_file in config_object.forecasts_files:
                    forecast_file_list.remove(forecast_file)

        return forecast_file_list
Exemplo n.º 10
0
    def run_forecast(self,
                     yield_forecast,
                     priority=RUN_FORECAST,
                     progress_monitor=None):
        forecast_full_name = '%s (%s)' % (yield_forecast.name,
                                          yield_forecast.forecast_date)
        logging.getLogger().info('Running forecast "%s".' % forecast_full_name)

        psims_exit_code = None
        db = None
        forecast_id = None
        simulations_ids = None
        exception_raised = False

        if not progress_monitor:
            progress_monitor = NullMonitor

        progress_monitor.end_value = 5
        progress_monitor.job_started()
        progress_monitor.update_progress(job_status=JOB_STATUS_WAITING)

        with self.system_config.jobs_lock.blocking_job(priority=priority):
            # Lock acquired.
            progress_monitor.update_progress(job_status=JOB_STATUS_RUNNING)

            forecast = copy.deepcopy(yield_forecast)
            try:
                run_start_time = datetime.now()

                # Get MongoDB connection.
                db = self.system_config.database['yield_db']

                # Add database connection information to the forecast config to use it when writing pSIMS params file.
                forecast.configuration.database = DotDict({
                    'name':
                    db.name,
                    'host':
                    db.client.HOST,
                    'port':
                    db.client.PORT
                })

                forecast.configuration.weather_maker_class = ForecastLoader.weather_series_makers[
                    forecast.configuration.weather_series]

                # Create an instance of the weather series maker.
                wth_series_maker = forecast.configuration.weather_maker_class(
                    self.system_config, forecast.configuration.max_parallelism)
                # The simulations collection can be defined by the user in the YAML file.
                if 'simulation_collection' not in forecast.configuration:
                    # If it's not defined, base the decision of which one to use on the type of weather series
                    # the forecast will use.
                    forecast.configuration[
                        'simulation_collection'] = 'simulations'
                    if forecast.configuration.weather_series == 'historic':
                        forecast.configuration[
                            'simulation_collection'] = 'reference_simulations'
                    if forecast.configuration.weather_series == 'netcdf':
                        forecast.configuration[
                            'simulation_collection'] = 'netcdf_simulations'

                if forecast.configuration[
                        'simulation_collection'] not in db.collection_names():
                    raise RuntimeError(
                        'The specified collection (%s) does not exist in the results database.'
                        % forecast.configuration['simulation_collection'])

                folder_name = "%s" % (datetime.now().isoformat())
                folder_name = folder_name.replace('"', '').replace(
                    '\'', '').replace(' ', '_')
                forecast.folder_name = folder_name

                # Add folder name to rundir and create it.
                forecast.paths.rundir = os.path.abspath(
                    os.path.join(forecast.paths.rundir, folder_name))
                create_folder_with_permissions(forecast.paths.rundir)

                # Create a folder for the weather grid inside that rundir.
                forecast.paths.weather_grid_path = os.path.join(
                    forecast.paths.rundir, 'wth')
                create_folder_with_permissions(
                    forecast.paths.weather_grid_path)

                # Create a folder for the soil grid inside that rundir.
                forecast.paths.soil_grid_path = os.path.join(
                    forecast.paths.rundir, 'soils')
                create_folder_with_permissions(forecast.paths.soil_grid_path)

                # Create the folder where we'll read the CSV files created by the database.
                forecast.paths.wth_csv_read = os.path.join(
                    forecast.paths.wth_csv_read, folder_name)
                forecast.paths.wth_csv_export = os.path.join(
                    forecast.paths.wth_csv_export, folder_name)
                create_folder_with_permissions(forecast.paths.wth_csv_read)

                active_threads = dict()

                forecast.weather_stations = {}
                forecast.rainfall = {}

                stations_not_updated = set()
                if forecast.forecast_date is None:
                    run_date = datetime.now().date()
                else:
                    run_date = datetime.strptime(forecast.forecast_date,
                                                 '%Y-%m-%d').date()

                for loc_key, location in forecast['locations'].items():
                    omm_id = location['weather_station']

                    # Upsert location.
                    db.locations.update_one(
                        {'_id': location.id},
                        {
                            # '$set': {
                            #     "name": location.name,
                            #     "coord_x": location.coord_x,
                            #     "coord_y": location.coord_y,
                            #     "weather_station": location.weather_station
                            # }
                            '$set': location.persistent_view()
                        },
                        upsert=True)

                    # If this forecast is creating weather files from the weather database, check that the station
                    # associated with each location is currently updated.
                    if issubclass(wth_series_maker.__class__,
                                  DatabaseWeatherSeries):
                        if omm_id not in self.weather_updater.wth_max_date:
                            # Since the system only updates weather info for the stations that are currently being used,
                            # it may happen that the requested station is not in the weather updated max dates dict.
                            self.weather_updater.add_weather_station_id(omm_id)
                            stations_not_updated.add(omm_id)
                            continue
                        elif not isinstance(wth_series_maker, HistoricalSeriesMaker) and \
                                        self.weather_updater.wth_max_date[omm_id] < run_date:
                            # If the forecast date is greater than the max date of climate data for this station,
                            # we add it to the not updated set.
                            stations_not_updated.add(omm_id)
                            continue

                    if omm_id not in active_threads:
                        # Weather station data updated, forecast can be ran.
                        active_threads[omm_id] = threading.Thread(
                            target=wth_series_maker.create_series,
                            name='create_series for omm_id = %s' % omm_id,
                            args=(location, forecast))
                    else:
                        # Weather station already has an associated thread that will create the weather series.
                        continue

                if len(stations_not_updated) > 0:
                    # Forecast can't continue, must be rescheduled.
                    logging.warning(
                        "Couldn't run forecast \"%s\" because the following weather stations don't have "
                        "updated data: %s." %
                        (forecast_full_name, list(stations_not_updated)))
                    self.reschedule_forecast(forecast)
                    return 0

                progress_monitor.update_progress(new_value=1)

                weather_series_monitor = ProgressMonitor(
                    end_value=len(active_threads))
                progress_monitor.add_subjob(
                    weather_series_monitor,
                    job_name='Create weather series (%s)' %
                    forecast.configuration.weather_maker_class.__name__)
                joined_threads_count = 0

                # Start all weather maker threads.
                for t in list(active_threads.values()):
                    t.start()

                # Wait for the weather grid to be populated.
                for t in list(active_threads.values()):
                    t.join()
                    joined_threads_count += 1
                    weather_series_monitor.update_progress(
                        joined_threads_count)

                weather_series_monitor.job_ended()
                progress_monitor.update_progress(new_value=2)

                # If the folder is empty, delete it.
                if os.path.exists(forecast.paths.wth_csv_read) and len(
                        os.listdir(forecast.paths.wth_csv_read)) == 0:
                    # These folder are used only by classes in core.modules.simulations_manager.weather.csv
                    # The rest of the weather series makers use in-memory series creation.
                    shutil.rmtree(forecast.paths.wth_csv_read)

                forecast_persistent_view = forecast.persistent_view()
                is_reference_forecast = True
                if forecast_persistent_view:
                    is_reference_forecast = False
                    forecast_id = db.forecasts.insert_one(
                        forecast_persistent_view).inserted_id

                    if not forecast_id:
                        raise RuntimeError(
                            'Failed to insert forecast with id: %s' %
                            forecast_persistent_view['_id'])

                simulations_ids = []
                reference_ids = []

                # Flatten simulations and update location info (with id's and computed weather stations).
                for loc_key, loc_simulations in forecast.simulations.items():
                    for sim in loc_simulations:
                        sim.location = forecast.locations[loc_key]
                        sim.weather_station = forecast.weather_stations[
                            sim.location.weather_station]

                        # If a simulation has an associated forecast, fill the associated fields.
                        if forecast_id:
                            sim.forecast_id = forecast_id
                            sim.forecast_date = forecast.forecast_date
                            reference_ids.append(sim.reference_id)

                        sim_id = db[forecast.configuration[
                            'simulation_collection']].insert_one(
                                sim.persistent_view()).inserted_id
                        sim['_id'] = sim_id
                        simulations_ids.append(sim_id)

                if not is_reference_forecast:
                    # Find which simulations have a reference simulation associated.
                    found_reference_simulations = db.reference_simulations.find(
                        {'_id': {
                            '$in': reference_ids
                        }}, projection=['_id'])

                    found_reference_simulations = set(
                        [s['_id'] for s in found_reference_simulations])

                    diff = set(
                        reference_ids
                    ) - found_reference_simulations - self.scheduled_reference_simulations_ids
                    if len(diff) > 0:
                        # There are simulations that don't have a reference simulation calculated.
                        ref_forecast = copy.deepcopy(yield_forecast)
                        ref_forecast.name = 'Reference simulations for forecast %s' % forecast.name
                        ref_forecast.configuration.weather_series = 'historic'
                        ref_forecast.forecast_date = None

                        rm_locs = []

                        for loc_key, loc_simulations in ref_forecast.simulations.items(
                        ):
                            # Filter reference simulations.
                            loc_simulations[:] = [
                                x for x in loc_simulations
                                if x.reference_id in diff
                            ]

                            if len(loc_simulations) == 0:
                                rm_locs.append(loc_key)

                        for loc_key in rm_locs:
                            del ref_forecast.locations[loc_key]
                            del ref_forecast.simulations[loc_key]

                        self.schedule_forecast(ref_forecast,
                                               priority=RUN_REFERENCE_FORECAST)
                        self.scheduled_reference_simulations_ids |= diff
                        logging.info(
                            'Scheduled reference simulations for forecast: %s'
                            % forecast.name)
                else:
                    # Remove this reference forecasts id's.
                    self.scheduled_reference_simulations_ids -= set(
                        reference_ids)

                progress_monitor.update_progress(new_value=3)

                forecast.paths.run_script_path = CampaignWriter.write_campaign(
                    forecast, output_dir=forecast.paths.rundir)
                forecast.simulation_count = len(simulations_ids)

                progress_monitor.update_progress(new_value=4)

                # Insertar ID's de simulaciones en el pronóstico.
                if forecast_id:
                    db.forecasts.update_one(
                        {"_id": forecast_id},
                        {"$push": {
                            "simulations": {
                                "$each": simulations_ids
                            }
                        }})

                # Ejecutar simulaciones.
                weather_series_monitor = ProgressMonitor()
                progress_monitor.add_subjob(weather_series_monitor,
                                            job_name='Run pSIMS')
                psims_exit_code = self.psims_runner.run(
                    forecast,
                    progress_monitor=weather_series_monitor,
                    verbose=True)

                # Check results
                if psims_exit_code == 0:
                    inserted_simulations = db[
                        forecast.configuration['simulation_collection']].find(
                            {
                                '_id': {
                                    '$in': simulations_ids
                                },
                                # Find simulations that have results field (either cycle or daily).
                                # This property is created by the pSIMS Mongo hook so if a simulation doesn't have this
                                # field it means that the execution inside pSIMS failed.
                                '$or': [{
                                    'daily_results': {
                                        '$exists': True
                                    }
                                }, {
                                    'cycle_results': {
                                        '$exists': True
                                    }
                                }]
                            },
                            projection=[
                                'daily_results', 'cycle_results', 'name'
                            ])

                    if len(simulations_ids) != inserted_simulations.count():
                        raise RuntimeError(
                            'Mismatch between simulations id\'s length and finished simulations '
                            'count (%s != %s)' %
                            (len(simulations_ids),
                             inserted_simulations.count()))

                    if 'HWAM' in forecast.results.cycle:
                        # Check that there are no -99 values in the crop yield.
                        for sim in inserted_simulations:
                            if 'cycle_results' not in sim:
                                continue
                            for scen_idx, scenario in enumerate(
                                    sim['cycle_results']['HWAM']['scenarios']):

                                if not (isinstance(scenario['value'], int) or
                                        isinstance(scenario['value'], float)):
                                    # Nested years inside the scenario.
                                    for year_index, v in enumerate(
                                            scenario['value']):
                                        if v['value'] < 0:
                                            raise RuntimeError(
                                                'Found a negative value for HWAM inside a simulation '
                                                '(%s, id = %s, scenario index = %d, year index = %d).'
                                                % (sim['name'], sim['_id'],
                                                   scen_idx, year_index))

                                elif scenario['value'] < 0:
                                    raise RuntimeError(
                                        'Found a negative value for HWAM inside a simulation (%s, '
                                        'id = %s, scenario index = %d).' %
                                        (sim['name'], sim['_id'], scen_idx))

                logging.getLogger().info(
                    'Finished running forecast "%s" (time=%s).\n' %
                    (forecast.name, datetime.now() - run_start_time))
            except:
                logging.getLogger().error(
                    "Failed to run forecast '%s'. Reason: %s" %
                    (forecast.name, log_format_exception()))

                exception_raised = True
            finally:
                if exception_raised or psims_exit_code != 0:
                    logging.info('Rolling back DB data for forecast "%s".' %
                                 forecast_full_name)
                    if db:
                        if simulations_ids and len(simulations_ids) > 0:
                            db[forecast.configuration[
                                'simulation_collection']].delete_many(
                                    {"_id": {
                                        "$in": simulations_ids
                                    }})
                        if forecast_id:
                            db.forecasts.delete_one({"_id": forecast_id})
                    return -1

                if not psims_exit_code or psims_exit_code == 0:
                    # Clean the rundir.
                    if os.path.exists(forecast.paths.rundir):
                        shutil.rmtree(forecast.paths.rundir)

                if psims_exit_code == 0:
                    # Clean pSIMS run folder.
                    rundir_regex = re.compile('.+/run(\d){3}$')
                    files_filter = lambda file_name: rundir_regex.match(
                        file_name) is not None

                    psims_run_dirs = sorted(listdir_fullpath(
                        forecast.paths.psims, filter=files_filter),
                                            reverse=True)

                    if len(psims_run_dirs) > 0:
                        # Remove the last runNNN directory (the one this execution created).
                        shutil.rmtree(psims_run_dirs[0])

                return psims_exit_code
Exemplo n.º 11
0
    def test_initFromDict(self):
        d = {"prop1": 1, "prop2": 2}
        d = DotDict(d)

        self.assertEqual(d.prop1, d.get('prop1'))
        self.assertEqual(d.prop1, d['prop1'])
Exemplo n.º 12
0
    def test_joinDicts(self):
        d1 = DotDict({"prop1": 1})
        d2 = DotDict({"prop2": 2})

        d1.update(d2)
        self.assertEqual(d1.prop2, 2)
Exemplo n.º 13
0
    def test_nestedDict(self):
        d = {"prop1": {"prop2": {"prop3": 3}}}
        d = DotDict(d)

        self.assertEqual(d.prop1.prop2.prop3, 3)