Exemplo n.º 1
0
    def __init__(self, args, num_classes):
        """
        Initializes Deeplabv3_plus

        Args:
            args (argparse.ArgumentParser): command line arguments
            num_classes (int): specifies the output channels of the last convolution
        """
        super(Deeplabv3_plus, self).__init__()

        self.args = args

        if args.model == DEEPLAB:
            self.backbone = ResNet101(args.output_stride, args.init_type)
            if self.args.refine_network:
                self.refine_backbone = ResNet101(args.output_stride, args.init_type)
        elif args.model == DEEPLAB_50:
            self.backbone = ResNet50(args.output_stride, args.init_type)
            if self.args.refine_network:
                self.refine_backbone = ResNet50(args.output_stride, args.init_type)
        else:
            raise NotImplementedError()

        self.aspp = ASPP(args.output_stride, self.args.resize)
        self.decoder = Decoder(num_classes)
        self.upsampling = tf.keras.layers.UpSampling2D((4,4), interpolation='bilinear')

        if self.args.refine_network:
            self.refine_aspp = ASPP(args.output_stride, self.args.resize)
            self.refine_decoder = Decoder(num_classes)
Exemplo n.º 2
0
    def __init__(self):
        super(SSD, self).__init__()
        self.num_classes = NUM_CLASSES
        self.anchor_ratios = ASPECT_RATIOS

        self.backbone = ResNet50()
        self.learnable_factor = self.add_weight(
            shape=(1, 1, 1, 512),
            dtype=tf.float32,
            initializer=tf.keras.initializers.Ones(),
            trainable=True,
            name='fckr')
        # self.conv1 = tf.keras.layers.Conv2D(filters=1024, kernel_size=(1, 1), strides=1, padding="same")
        self.conv2_1 = tf.keras.layers.Conv2D(filters=256,
                                              kernel_size=(1, 1),
                                              strides=1,
                                              padding="same")
        self.conv2_2 = tf.keras.layers.Conv2D(filters=512,
                                              kernel_size=(3, 3),
                                              strides=2,
                                              padding="same")
        self.conv3_1 = tf.keras.layers.Conv2D(filters=128,
                                              kernel_size=(1, 1),
                                              strides=1,
                                              padding="same")
        self.conv3_2 = tf.keras.layers.Conv2D(filters=256,
                                              kernel_size=(3, 3),
                                              strides=2,
                                              padding="same")
        self.conv4_1 = tf.keras.layers.Conv2D(filters=128,
                                              kernel_size=(1, 1),
                                              strides=1,
                                              padding="same")
        self.conv4_2 = tf.keras.layers.Conv2D(filters=256,
                                              kernel_size=(3, 3),
                                              strides=2,
                                              padding="same")
        self.pool = tf.keras.layers.GlobalAveragePooling2D()

        self.predict_1 = self._predict_layer(k=self._get_k(i=0))
        self.predict_2 = self._predict_layer(k=self._get_k(i=1))
        self.predict_3 = self._predict_layer(k=self._get_k(i=2))
        self.predict_4 = self._predict_layer(k=self._get_k(i=3))
        self.predict_5 = self._predict_layer(k=self._get_k(i=4))
        self.predict_6 = self._predict_layer(k=self._get_k(i=5))
Exemplo n.º 3
0
    def __init__(self):
        super(SSD, self).__init__()
        self.num_classes = NUM_CLASSES + 1
        self.anchor_ratios = ASPECT_RATIOS

        self.backbone = ResNet50()
        self.conv1 = tf.keras.layers.Conv2D(filters=1024,
                                            kernel_size=(1, 1),
                                            strides=1,
                                            padding="same")
        self.conv2_1 = tf.keras.layers.Conv2D(filters=256,
                                              kernel_size=(1, 1),
                                              strides=1,
                                              padding="same")
        self.conv2_2 = tf.keras.layers.Conv2D(filters=512,
                                              kernel_size=(3, 3),
                                              strides=2,
                                              padding="same")
        self.conv3_1 = tf.keras.layers.Conv2D(filters=128,
                                              kernel_size=(1, 1),
                                              strides=1,
                                              padding="same")
        self.conv3_2 = tf.keras.layers.Conv2D(filters=256,
                                              kernel_size=(3, 3),
                                              strides=2,
                                              padding="same")
        self.conv4_1 = tf.keras.layers.Conv2D(filters=128,
                                              kernel_size=(1, 1),
                                              strides=1,
                                              padding="same")
        self.conv4_2 = tf.keras.layers.Conv2D(filters=256,
                                              kernel_size=(3, 3),
                                              strides=2,
                                              padding="same")
        self.pool = tf.keras.layers.GlobalAveragePooling2D()

        self.predict_1 = self._predict_layer(k=self._get_k(i=0))
        self.predict_2 = self._predict_layer(k=self._get_k(i=1))
        self.predict_3 = self._predict_layer(k=self._get_k(i=2))
        self.predict_4 = self._predict_layer(k=self._get_k(i=3))
        self.predict_5 = self._predict_layer(k=self._get_k(i=4))
        self.predict_6 = self._predict_layer(k=self._get_k(i=5))
    def __init__(self, args, num_classes=21, norm_layer=nn.BatchNorm2d, input_channels=3):
        super(DeepLabv3_plus, self).__init__()
        self.args = args

        if args.model == DEEPLAB:
            self.backbone = ResNet101(args.output_stride, norm_layer=norm_layer, pretrained=args.pretrained, input_channels=input_channels)
            self.aspp_inplanes = 2048
            self.decoder_inplanes = 256

            if self.args.refine_network:
                self.refine_backbone = ResNet101(args.output_stride, norm_layer=norm_layer, pretrained=args.pretrained, input_channels=input_channels + num_classes)
        elif args.model == DEEPLAB_50:
            self.backbone = ResNet50(args.output_stride, norm_layer=norm_layer, pretrained=args.pretrained)
            self.aspp_inplanes = 2048
            self.decoder_inplanes = 256

            if self.args.refine_network:
                self.refine_backbone = ResNet50(args.output_stride, norm_layer=norm_layer, pretrained=args.pretrained, input_channels=input_channels + num_classes)
        elif args.model == DEEPLAB_34:
            self.backbone = ResNet34(args.output_stride, norm_layer=norm_layer, pretrained=args.pretrained)
            self.aspp_inplanes = 2048
            self.decoder_inplanes = 256

            if self.args.refine_network:
                self.refine_backbone = ResNet34(args.output_stride, norm_layer=norm_layer, pretrained=args.pretrained, input_channels=input_channels + num_classes)
        elif args.model == DEEPLAB_18:
            self.backbone = ResNet18(args.output_stride, norm_layer=norm_layer, pretrained=args.pretrained)
            self.aspp_inplanes = 2048
            self.decoder_inplanes = 256

            if self.args.refine_network:
                self.refine_backbone = ResNet18(args.output_stride, norm_layer=norm_layer, pretrained=args.pretrained, input_channels=input_channels + num_classes)
        elif args.model == DEEPLAB_MOBILENET:
            self.backbone = MobileNet_v2(pretrained=args.pretrained, first_layer_input_channels=input_channels)
            self.aspp_inplanes = 320
            self.decoder_inplanes = 24

            if self.args.refine_network:
                self.refine_backbone = MobileNet_v2(pretrained=args.pretrained, first_layer_input_channels=input_channels + num_classes)

        elif args.model == DEEPLAB_MOBILENET_DILATION:
            self.backbone = MobileNet_v2_dilation(pretrained=args.pretrained, first_layer_input_channels=input_channels)
            self.aspp_inplanes = 320

            if self.args.refine_network:
                self.refine_backbone = MobileNet_v2_dilation(pretrained=args.pretrained, first_layer_input_channels=input_channels + num_classes)
            self.decoder_inplanes = 24
        else:
            raise NotImplementedError

        if self.args.use_aspp:
            self.aspp = ASPP(args.output_stride, norm_layer=norm_layer, inplanes=self.aspp_inplanes)

        aspp_outplanes = 256 if self.args.use_aspp else self.aspp_inplanes
        self.decoder = Decoder(num_classes, norm_layer=norm_layer, inplanes=self.decoder_inplanes, aspp_outplanes=aspp_outplanes)

        if self.args.learned_upsampling:
            self.learned_upsampling = nn.Sequential(nn.ConvTranspose2d(num_classes, num_classes, kernel_size=4, stride=2, padding=1),
                                                    nn.ConvTranspose2d(num_classes, num_classes, kernel_size=4, stride=2, padding=1))

        if self.args.refine_network:
            if self.args.use_aspp:
                self.refine_aspp = ASPP(args.output_stride, norm_layer=norm_layer, inplanes=self.aspp_inplanes)

            self.refine_decoder = Decoder(num_classes, norm_layer=norm_layer, inplanes=self.decoder_inplanes, aspp_outplanes=aspp_outplanes)

            if self.args.learned_upsampling:
                self.refine_learned_upsampling = nn.Sequential(nn.ConvTranspose2d(num_classes, num_classes, kernel_size=4, stride=2, padding=1),
                                                               nn.ConvTranspose2d(num_classes, num_classes, kernel_size=4, stride=2, padding=1))