Exemplo n.º 1
0
    def create_sample_graph(data1: np.ndarray, data2: np.ndarray) -> Graph:
        graph = Graph()

        # input
        x = Input('placeholder', [1, 5, 5, 3], Float32())

        # Conv1
        w1 = Constant('weight1', Float32(), data1)
        conv1 = Conv('conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': w1}, kernel_shape=[2, 2])

        # activation quantizer
        s1 = Constant('aq_const1', Float32(), np.array(1))
        s2 = Constant('aq_const2', Float32(), np.array(2))
        aq = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3], Float32(), {'X': conv1, 'Y': s1, 'Z': s2})

        # Conv2
        w2 = Constant('weight2', Float32(), data2)
        kq = QTZ_binary_mean_scaling('kqtz1', [1, 2, 2, 3], Float32(), {'input': w2})
        conv2 = Conv('conv2', [1, 3, 3, 3], Float32(), {'X': aq, 'W': kq}, kernel_shape=[2, 2])
        conv2.a_quantizer = [aq]
        conv2.quantizer = kq

        # One output
        y = Output('output', [1, 3, 3, 3], Float32(), {'input': conv2})

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph
Exemplo n.º 2
0
    def run_forward_conv(self, node: Conv, **kwargs: Any) -> None:
        bits: List[int] = []
        aqtzers: List[Quantizer] = []
        if node_is_qconv(node):
            for x in self._qconv_qconv[node]:
                if node_is_activation_quantizer(x):
                    bits.append(x.nbit)
                    aqtzers.append(x)

        if not (len(set(bits)) == 1):
            ValueError('Values are not consistent')
        else:
            node.a_quantizer = aqtzers
Exemplo n.º 3
0
    def create_sample_graph(data1: np.ndarray, data2: np.ndarray) -> Graph:
        graph = Graph()

        # input
        x = Input('placeholder', [1, 5, 5, 3], Float32())

        # Conv1
        w1 = Constant('weight1', Float32(), data1)
        conv1 = Conv('conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': w1}, kernel_shape=[2, 2])

        # activation quantizer
        s1 = Constant('aq_const1', Int32(), np.array([2], dtype=np.int32))
        s2 = Constant('aq_const2', Float32(), np.array([2.0], dtype=np.float32))
        aq1 = QTZ_linear_mid_tread_half('aqtz1', [1, 4, 4, 3], Float32(), {'X': conv1, 'Y': s1, 'Z': s2})

        # Conv2
        w2 = Constant('weight2', Float32(), data2)
        kq = QTZ_binary_mean_scaling('kqtz1', [1, 2, 2, 3], Float32(), {'input': w2})
        conv2 = Conv('conv2', [1, 3, 3, 3], Float32(), {'X': aq1, 'W': kq}, kernel_shape=[2, 2])
        conv2.a_quantizer = [aq1]
        conv2.quantizer = kq
        conv2.is_quantized = True

        sc = Constant('bn_scale', Float32(), np.random.rand(3))
        be = Constant('bn_b', Float32(), np.random.rand(3))
        mu = Constant('bn_mu', Float32(), np.random.rand(3))
        va = Constant('bn_var', Float32(), np.random.rand(3))
        bn = BatchNormalization('bn', [1, 3, 3, 3], Float32(), {'X': conv2,
                                                                'scale': sc,
                                                                'B': be,
                                                                'mean': mu,
                                                                'var': va})

        # activation quantizer
        s3 = Constant('aq_const3', Int32(), np.array([2], dtype=np.int32))
        s4 = Constant('aq_const4', Float32(), np.array([2.0], dtype=np.float32))
        aq2 = QTZ_linear_mid_tread_half('aqtz2', [1, 3, 3, 3], Float32(), {'X': bn, 'Y': s3, 'Z': s4})

        # One output
        y = Output('output', [1, 3, 3, 3], Float32(), {'input': aq2})

        # add ops to the graph
        graph.add_op_and_inputs(y)

        return graph