Exemplo n.º 1
0
    def network(self, image, batch_size):
        h0 = lrelu(conv2d(image, self.dim, name=self.prefix + 'h0_conv'))
        h1 = lrelu(
            self.d_bn1(conv2d(h0, self.dim * 2, name=self.prefix + 'h1_conv')))
        h2 = lrelu(
            self.d_bn2(conv2d(h1, self.dim * 4, name=self.prefix + 'h2_conv')))
        h3 = lrelu(
            self.d_bn3(conv2d(h2, self.dim * 8, name=self.prefix + 'h3_conv')))
        hF = lrelu(
            self.d_bn4(conv2d(h3, self.o_dim, name=self.prefix + 'hF_conv')))
        hF = tf.reshape(hF, [batch_size, -1])

        return {'h0': h0, 'h1': h1, 'h2': h2, 'h3': h3, 'hF': hF}
Exemplo n.º 2
0
    def network(self, image, batch_size):
        o_dim = self.o_dim if (self.o_dim > 0) else 8 * self.dim
        h0 = lrelu(conv2d(image, self.dim, name=self.prefix + 'h0_conv'))
        h1 = lrelu(
            self.d_bn1(conv2d(h0, self.dim * 2, name=self.prefix + 'h1_conv')))
        h2 = lrelu(
            self.d_bn2(conv2d(h1, self.dim * 4, name=self.prefix + 'h2_conv')))
        h3 = lrelu(
            self.d_bn3(conv2d(h2, self.dim * 8, name=self.prefix + 'h3_conv')))
        hF = linear(tf.reshape(h3, [batch_size, -1]), o_dim,
                    self.prefix + 'h4_lin')

        return {'h0': h0, 'h1': h1, 'h2': h2, 'h3': h3, 'hF': hF}
Exemplo n.º 3
0
    def network(self, image, batch_size):
        from core.resnet import block, ops
        image = tf.transpose(image, [0, 3, 1, 2])  # NHWC to NCHW

        h0 = lrelu(
            ops.conv2d.Conv2D(self.prefix + 'h0_conv',
                              3,
                              self.dim,
                              3,
                              image,
                              he_init=False))
        h1 = block.ResidualBlock(self.prefix + 'res1',
                                 self.dim,
                                 2 * self.dim,
                                 3,
                                 h0,
                                 resample='down')
        h2 = block.ResidualBlock(self.prefix + 'res2',
                                 2 * self.dim,
                                 4 * self.dim,
                                 3,
                                 h1,
                                 resample='down')
        h3 = block.ResidualBlock(self.prefix + 'res3',
                                 4 * self.dim,
                                 8 * self.dim,
                                 3,
                                 h2,
                                 resample='down')
        h4 = block.ResidualBlock(self.prefix + 'res4',
                                 8 * self.dim,
                                 8 * self.dim,
                                 3,
                                 h3,
                                 resample='down')

        hF = tf.reshape(h4, [-1, 4 * 4 * 8 * self.dim])
        hF = linear(hF, self.o_dim, self.prefix + 'h5_lin')

        return {'h0': h0, 'h1': h1, 'h2': h2, 'h3': h3, 'h4': h4, 'hF': hF}