Exemplo n.º 1
0
def translate_generic_op(op, parameters, blob_writer, literal_params=[]):
    inputs = {}
    for param_name, vars in op.inputs.items():
        if param_name.startswith("_"):
            continue
        if not isinstance(vars, (list, tuple)):
            vars = [vars]

        arguments = []
        for _var in vars:
            binding = pm.Argument.Binding()
            # use const value literals if requested
            if param_name in literal_params:
                binding.value.CopyFrom(create_immediate_value(_var))
            else:
                binding.name = _var.name
            arguments.append(binding)

        args = pm.Argument()
        args.arguments.extend(arguments)
        inputs[param_name] = args

    outputs = [
        pm.NamedValueType(name=v.name, type=types_to_proto(v.sym_type))
        for v in op.outputs
    ]
    blocks = None
    if len(op.blocks) > 0:
        blocks = [create_block(b, parameters, blob_writer) \
            for b in op.blocks]

    op_type = op.op_type
    attr_dict = {}
    if op.op_type in SSAOpRegistry.custom_ops:
        op_type = "custom_layer"
        class_name = op.bindings.get("class_name", op.name)
        input_order = op.bindings.get("input_order", [])
        parameters = op.bindings.get("parameters", [])
        weights = op.bindings.get("weights", [])
        description = op.bindings.get("description", "")

        attr_dict["name"] = create_scalar_value(op.name)
        attr_dict["class_name"] = create_scalar_value(class_name)
        attr_dict["input_order"] = create_list_scalarvalue(input_order, np.str)
        attr_dict["parameters"] = create_list_scalarvalue(parameters, np.str)
        attr_dict["weights"] = create_list_scalarvalue(weights, np.str)
        attr_dict["description"] = create_scalar_value(description)

    return pm.Operation(
        type=op_type,
        blocks=blocks,
        inputs=inputs,
        attributes=attr_dict,
        outputs=outputs,
    )
Exemplo n.º 2
0
def convert_function(function, parameters, blob_writer):
    block = create_block(function, parameters, blob_writer)

    inputs = []
    for name, var in function.inputs.items():
        proto_type = types_to_proto(var.sym_type)
        inputs.append(pm.NamedValueType(name=name, type=proto_type))

    return pm.Function(inputs=inputs,
                       opset="CoreML5",
                       block_specializations={"CoreML5": block})
Exemplo n.º 3
0
def create_valuetype_scalar(data_type):
    """
    Return pm.ValueType with DataType set
    """
    v_type = pm.ValueType()
    update_tensortype(v_type.tensorType, (), data_type)
    return v_type
Exemplo n.º 4
0
def types_to_proto(valuetype):
    if types.is_tensor(valuetype):
        primitive = types_to_proto_primitive(valuetype.get_primitive())
        return create_valuetype_tensor(valuetype.get_shape(), primitive)
    elif types.is_tuple(valuetype):
        v_type = pm.ValueType()
        t_type = v_type.tupleType
        for t in valuetype.T:
            new_v_type = t_type.types.add()
            new_v_type.CopyFrom(types_to_proto(t))
        return v_type
    elif types.is_list(valuetype):
        elem = valuetype.T[0]
        length = valuetype.T[1]
        if types.is_tensor(elem):
            dtype = types_to_proto_primitive(elem.get_primitive())
            elem_shape = elem.get_shape()
        elif types.is_scalar(elem):
            dtype = types_to_proto_primitive(valuetype)
            elem_shape = ()
        elif types.is_str(elem):
            dtype = types_to_proto_primitive(elem)
            elem_shape = ()
        else:
            raise NotImplementedError(
                "Only list of either tensors or scalars supported. "
                "Got element of type {}".format(elem.__type_info__()))
        return create_valuetype_list(length=length,
                                     elem_shape=elem_shape,
                                     dtype=dtype)
    elif types.is_dict(valuetype):
        return create_valuetype_dict(valuetype.T[0], valuetype.T[1])
    else:
        return create_valuetype_scalar(types_to_proto_primitive(valuetype))
Exemplo n.º 5
0
def create_tensor_value(np_tensor):
    """
    Return TensorValue.
    """
    builtin_type = numpy_type_to_builtin_type(np_tensor.dtype)

    value_type = create_valuetype_tensor(
        np_tensor.shape, types_to_proto_primitive(builtin_type))
    val = pm.Value(type=value_type)
    t_val = val.immediateValue.tensor

    # Copy the tensor values from the input tensor
    t_field = _tensor_field_by_type(t_val, builtin_type)

    if 0 not in np_tensor.shape:
        if builtin_type == types.str:
            for x in np.nditer(np_tensor):
                t_field.append(x.encode("utf-8"))
        elif builtin_type == types.fp16:
            bytevals = bytes()
            for x in np_tensor.flatten():
                bytevals += to_py_type(x)
            val.immediateValue.tensor.bytes.values = bytevals
        else:
            for x in np_tensor.flatten():
                t_field.append(to_py_type(x))
    else:  # This is an "empty" tensor (tensor with a dimension being size 0)
        _set_empty_tensor_field_by_type(t_val, builtin_type)
    return val
Exemplo n.º 6
0
def create_valuetype_tensor(shape, data_type):
    """
    Return pm.ValueType with tensor (TensorType) set.
    shape: list of ints
    """
    v_type = pm.ValueType()
    update_tensortype(v_type.tensorType, shape, data_type)
    return v_type
Exemplo n.º 7
0
def create_valuetype_dict(key_type, value_type):
    """
    Return pm.ValueType with dict (dictionaryType) set
    """
    v_type = pm.ValueType()
    v_type.dictionaryType.keyType.CopyFrom(types_to_proto(key_type))
    v_type.dictionaryType.valueType.CopyFrom(types_to_proto(value_type))
    return v_type
Exemplo n.º 8
0
def create_valuetype_list(length, elem_shape, dtype):
    """
    Return pm.ValueType with List (ListType) set.
    length: length of list (int)
    """
    v_type = pm.ValueType()
    update_listtype(v_type.listType, length, elem_shape, dtype)
    return v_type
Exemplo n.º 9
0
def translate_const(op, blob_writer):
    output_var = op.outputs[0]

    if should_use_weight_file(output_var.val):
        value = create_file_value(output_var, blob_writer)
    else:
        value = create_immediate_value(output_var)

    return pm.Operation(
        type="const",
        attributes={
            "name": create_scalar_value(op.name),
            "val": value
        },
        outputs=[
            pm.NamedValueType(name=output_var.name,
                              type=types_to_proto(output_var.sym_type))
        ],
    )
Exemplo n.º 10
0
def create_file_value_tensor(file_name, offset, dim, data_type):
    """
    Create a Value Type to store File Value
    """
    val = pm.Value(
        blobFileValue=pm.Value.BlobFileValue(fileName=file_name,
                                             offset=offset),
        type=create_valuetype_tensor(dim, data_type),
    )
    return val
Exemplo n.º 11
0
def create_block(block, parameters, blob_writer):
    proto_ops = []

    # Find the const op that generates classify's "label" / "class" string vec.
    classify_const_classes_op = None
    if len(block.operations) > 0:
        # Classify is always the last operation in the block.
        op = block.operations[-1]
        op_cls_name = type(op).__name__
        if (op_cls_name == "classify"):
            classes_var = op.inputs["classes"]
            classify_const_classes_op = classes_var.op
            if (len(classes_var.child_ops) != 1):
                raise ValueError(
                    "Classify's labels/classes should be input to only 1 op (classify)."
                )

    for op in block.operations:
        op_cls_name = type(op).__name__
        if op_cls_name == "const":
            # Do not serialize the const op that creates the var bound to the classifier's "classes" param.
            # The variable's value will be bound directly to classify's "classes" param instead.
            if op != classify_const_classes_op:
                proto_ops.append(translate_const(op, blob_writer))
        elif op_cls_name == "classify":
            # Classify's "classes" param should be serialized as a value literal bound
            # directly to the param, rather than as a const-generated variable.
            proto_ops.append(
                translate_generic_op(op, parameters, blob_writer, ["classes"]))
        else:
            proto_ops.append(translate_generic_op(op, parameters, blob_writer))

    inputs = []
    if not isinstance(block, Function):
        # Function is subclass of Block, but function's block has no input,
        # and hence skipping reading the block inputs.
        for var in block.inputs:
            proto_type = types_to_proto(var.sym_type)
            inputs.append(pm.NamedValueType(name=var.name, type=proto_type))
    output_names = [v.name for v in block.outputs]
    return pm.Block(inputs=inputs, outputs=output_names, operations=proto_ops)
Exemplo n.º 12
0
def create_list_scalarvalue(py_list, np_type):
    """
    Return a Value of type List, which holds scalar values
    """
    builtin_type = numpy_type_to_builtin_type(np_type)
    value_type = create_valuetype_list(
        length=len(py_list),
        elem_shape=(),
        dtype=types_to_proto_primitive(builtin_type))
    val = pm.Value(type=value_type)

    list_val = val.immediateValue.list
    for v in py_list:
        item_val = list_val.values.add()
        item_val.CopyFrom(create_scalar_value(v))

    return val
Exemplo n.º 13
0
def create_tuple_value(py_tuple):
    """
    Return type of Tuple
    """
    tp_val = pm.TupleValue()
    for t in py_tuple:
        item_val = tp_val.values.add()
        item_type = item_val.type  # ValueType
        if isinstance(t, int):
            v = create_scalar_value(t)
            item_val.immediateValue.i = t
            item_type = v.type
        elif isinstance(t, np.ndarray):
            v = create_tensor_value(t)
            item_val.immediateValue.tensor.CopyFrom(v.immediateValue.tensor)
            item_type.tensorType.CopyFrom(v.type.tensorType)
        else:
            raise NotImplementedError()
    return tp_val
Exemplo n.º 14
0
def create_scalar_value(py_scalar):
    """
    Return TensorValue (since there's no ScalarValue)
    """
    # Create the "scalar" (rank 0) tensor
    builtin_type = type_to_builtin_type(type(py_scalar))
    value_type = create_valuetype_scalar(
        types_to_proto_primitive(builtin_type))
    val = pm.Value(type=value_type)
    t_val = val.immediateValue.tensor

    # Set the tensor value
    t_field = _tensor_field_by_type(t_val, builtin_type)
    if builtin_type == types.fp16:
        val.immediateValue.tensor.bytes.values = to_py_type(py_scalar)
    else:
        if builtin_type == types.str:
            py_scalar = py_scalar.encode("utf-8")
        t_field.append(to_py_type(py_scalar))

    return val
Exemplo n.º 15
0
def load(prog, weights_dir, resume_on_errors=False, **kwargs):
    if "main" not in prog.functions:
        raise ValueError("main function not found in program")

    mil_passes.mil_backend_passes(prog)

    # if user has specified "ClassifierConfig", then add the "classify" op to the prog
    classifier_config = kwargs.get("classifier_config", None)
    predicted_feature_name = None
    predicted_probabilities_name = None
    if classifier_config is not None:
        predicted_feature_name, predicted_probabilities_name = _add_classify_op(
            prog, classifier_config)

    input_types = prog.main_input_types
    weight_path = os.path.join(weights_dir, _WEIGHTS_FILE_NAME)
    blob_writer = BlobWriter(weight_path)

    function_protos = {}
    for func_name, func in prog.functions.items():
        function_protos[func_name] = convert_function(func, prog.parameters,
                                                      blob_writer)

    proto = pm.Program(
        version=1,
        functions=function_protos,
    )

    input_features = []
    output_features = []
    symbolic_inputs = []
    image_input_names = {
    }  # these are the model inputs marked as image by the user
    input_shape_map = {}

    for input_type in input_types:
        if isinstance(input_type, ImageType):
            image_input_names[input_type.name] = input_type
            # error checking for input(s) marked as images
            if input_type.name not in list(
                    prog.functions["main"].inputs.keys()):
                msg = "Provided image input '{}' is not one of the inputs of the MIL program"
                raise ValueError(msg.format(input_type.name))
        input_shape_map[input_type.name] = input_type

    for name, var in prog.functions["main"].inputs.items():
        input_feature_type = ft.FeatureType()

        # error checking for input(s) marked as images
        # an image input must be of type tensor in program proto
        # (since an image type does not exist in MIL program)
        if name in image_input_names and \
                not types.is_tensor(var.sym_type):
            raise ValueError(
                "For the image input, '{}', its type in the MIL program must be tensor. "
                "Instead it is {}.".format(name, var.sym_type.__type_info__()))

        if types.is_tensor(var.sym_type):
            shape = var.sym_type.get_shape()
            if any_variadic(shape):
                raise ValueError(
                    "Variable rank model inputs are not supported!")
            if any_symbolic(shape):
                symbolic_inputs.append(name)
                # We extract the default input shape given by user first
                if name in input_shape_map:
                    shape = input_shape_map[name].shape.default
                else:
                    logging.warning(
                        "Input shape not fully specified by enumerated shapes or range dim! 1 will be used for dimension not specified instead."
                    )
                # If no input shape is provided (ex. auto conversion of -1 in Tensorflow)
                shape = [1 if is_symbolic(d) else d for d in shape]

            if name not in image_input_names:
                # make a feature type of Type "multiArrayType"
                array_type = ft.ArrayFeatureType(
                    shape=shape,
                    dataType=cast_to_framework_io_dtype(var, False))
                input_feature_type.multiArrayType.CopyFrom(array_type)
            else:
                if len(shape) < 3:
                    raise ValueError(
                        "Image input, '{}', must have rank at least 3. Instead it has rank {}"
                        .format(name, len(shape)))
                # make a feature type of Type "imageType"
                input_type = image_input_names[name]
                if not input_type.channel_first:
                    raise ValueError(
                        "Image input, '{}', must be in the channel_first format"
                        .format(name))

                if input_type.color_layout == "G":
                    clr_space = ft.ImageFeatureType.ColorSpace.GRAYSCALE
                elif input_type.color_layout == "BGR":
                    clr_space = ft.ImageFeatureType.ColorSpace.BGR
                else:
                    clr_space = ft.ImageFeatureType.ColorSpace.RGB

                image_type = ft.ImageFeatureType(width=shape[-1],
                                                 height=shape[-2],
                                                 colorSpace=clr_space)
                input_feature_type.imageType.CopyFrom(image_type)

            input_features.append(
                ml.FeatureDescription(name=name, type=input_feature_type))
        elif types.is_scalar(var.sym_type):
            array_type = ft.ArrayFeatureType(
                shape=[1], dataType=cast_to_framework_io_dtype(var, False))
            input_feature_type.multiArrayType.CopyFrom(array_type)
            input_features.append(
                ml.FeatureDescription(name=var.name, type=input_feature_type))
        else:
            raise NotImplementedError()

    for var in prog.functions["main"].outputs:
        output_feature_type = ft.FeatureType()
        if types.is_tensor(var.sym_type) or types.is_primitive(var.sym_type):
            dataType = None
            if classifier_config is None or var.name != predicted_feature_name:
                # Not a classifier output, make sure model output type matches with ML Program type.
                dataType = cast_to_framework_io_dtype(var, True)
            else:
                # Classifier outputs are set up separately, so default to fp32 for now.
                dataType = ft.ArrayFeatureType.ArrayDataType.FLOAT32

            array_type = ft.ArrayFeatureType(shape=None, dataType=dataType)
            output_feature_type.multiArrayType.CopyFrom(array_type)
            output_features.append(
                ml.FeatureDescription(name=var.name, type=output_feature_type))
        elif (types.is_dict(var.sym_type)):
            output_feature_type.dictionaryType.MergeFromString(b"")
            keytype, valtype = var.sym_type.T
            if types.is_str(keytype):
                output_feature_type.dictionaryType.stringKeyType.MergeFromString(
                    b"")
            elif (keytype == types_int64):
                output_feature_type.dictionaryType.int64KeyType.MergeFromString(
                    b"")
            else:
                raise ValueError("Dictionary key type not supported.")
            output_features.append(
                ml.FeatureDescription(name=var.name, type=output_feature_type))
        else:
            raise NotImplementedError()

    # Model description
    desc = ml.ModelDescription(input=input_features, output=output_features)
    if classifier_config is not None:
        desc.predictedFeatureName = predicted_feature_name
        desc.predictedProbabilitiesName = predicted_probabilities_name

        # Manually edit output type of predictedFeatureName.
        # It doesn't use MLMultiArray and really uses a "primitive" type.
        for output in desc.output:
            if output.name == predicted_feature_name:
                if type(classifier_config.class_labels[0]) == int:
                    output.type.int64Type.MergeFromString(b"")
                else:
                    output.type.stringType.MergeFromString(b"")
                break

    # Create ML Model
    model = ml.Model(description=desc,
                     specificationVersion=_SPECIFICATION_VERSION_IOS_15)
    model.mlProgram.CopyFrom(proto)

    # Set symbolic shapes
    for input_name in symbolic_inputs:
        input_type = input_shape_map.get(input_name, None)

        if isinstance(input_type, ImageType):
            if isinstance(input_type.shape, EnumeratedShapes):
                enumerated_shapes = []
                for s in input_type.shape.shapes:
                    enumerated_shapes.append(
                        NeuralNetworkImageSize(height=s.shape[-2],
                                               width=s.shape[-1]))
                add_enumerated_image_sizes(model,
                                           input_name,
                                           sizes=enumerated_shapes)
            else:
                img_range = NeuralNetworkImageSizeRange()
                H = input_type.shape.shape[-2]
                W = input_type.shape.shape[-1]

                if isinstance(H, RangeDim):
                    img_range.add_height_range((H.lower_bound, H.upper_bound))
                elif is_symbolic(H):
                    img_range.add_height_range((1, -1))
                else:
                    img_range.add_height_range((H, H))
                if isinstance(W, RangeDim):
                    img_range.add_width_range((W.lower_bound, W.upper_bound))
                elif is_symbolic(W):
                    img_range.add_width_range((1, -1))
                else:
                    img_range.add_width_range((W, W))

                update_image_size_range(model, input_name, img_range)
        elif isinstance(input_type, TensorType):
            if isinstance(input_type.shape, EnumeratedShapes):
                add_multiarray_ndshape_enumeration(
                    model, input_name,
                    [tuple(s.shape) for s in input_type.shape.shapes])
            else:
                lb = []
                ub = []
                for s in input_type.shape.shape:
                    if isinstance(s, RangeDim):
                        lb.append(s.lower_bound)
                        ub.append(s.upper_bound)
                    elif is_symbolic(s):
                        lb.append(1)
                        ub.append(-1)
                    else:
                        lb.append(s)
                        ub.append(s)
                set_multiarray_ndshape_range(model,
                                             input_name,
                                             lower_bounds=lb,
                                             upper_bounds=ub)
        elif input_type is None:
            sym_type = prog.functions["main"].inputs[input_name].sym_type
            lb = []
            ub = []
            for s in sym_type.get_shape():
                if is_symbolic(s):
                    lb.append(1)
                    ub.append(-1)
                else:
                    lb.append(s)
                    ub.append(s)
            set_multiarray_ndshape_range(model,
                                         input_name,
                                         lower_bounds=lb,
                                         upper_bounds=ub)

    # Set optional inputs
    _set_optional_inputs(model, input_types)

    return model