Exemplo n.º 1
0
    def __init__(self,
                 datasetFile,
                 textDir,
                 checking_folder,
                 lang,
                 client_txt,
                 pre_trained_gen,
                 pre_trained_disc,
                 ID,
                 batch_size=1):

        self.generator = torch.nn.DataParallel(
            gan_factory.generator_factory('gan').cuda())
        self.generator.load_state_dict(torch.load(pre_trained_gen))

        self.discriminator = torch.nn.DataParallel(
            gan_factory.discriminator_factory('gan').cuda())
        self.discriminator.load_state_dict(torch.load(pre_trained_disc))

        self.checking_folder = checking_folder
        self.lang = lang
        self.client_txt = client_txt
        self.filename = ID
        self.batch_size = batch_size

        cl = CorpusLoader(datasetFile=datasetFile, textDir=textDir)
        self.vectorizer = cl.TrainVocab()
Exemplo n.º 2
0
    def __init__(self, datasetFile, imagesDir, textDir, split, arrangement,
                 sampling):
        self.datasetFile = datasetFile
        self.imagesDir = imagesDir
        self.textDir = textDir
        self.split = split
        self.arrangement = easydict.EasyDict(arrangement)
        self.sampling = easydict.EasyDict(sampling)

        self.images_classes = {}
        self.assign_classes()

        cl = CorpusLoader(datasetFile=datasetFile, textDir=textDir)
        self.vectorizer = cl.TrainVocab()