Exemplo n.º 1
0
 def test_discrete_cross_correlation(self):
     ts1 = np.arange(10)
     ts2 = ts1 + 0.5
     t, cc = ta.discrete_cross_correlation(ts1,
                                           ts2,
                                           t_range=(-1., 1.),
                                           bins=10,
                                           isPlot=False)
     assert (np.array_equal(
         cc, np.array([0., 0., 1., 0., 0., 0., 0., 1., 0., 0.])))
     t, cc = ta.discrete_cross_correlation(ts1,
                                           ts2,
                                           t_range=(-1., 1.),
                                           bins=20,
                                           isPlot=False)
     assert (np.array_equal(
         cc,
         np.array([
             0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
             0., 0., 0., 0.
         ])))
     ts2 = np.hstack((ts2, ts2 + 0.01)).flatten()
     t, cc = ta.discrete_cross_correlation(ts1,
                                           ts2,
                                           t_range=(-1., 1.),
                                           bins=20,
                                           isPlot=False)
     assert (np.array_equal(
         cc,
         np.array([
             0., 0., 0., 0., 0., 2., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2.,
             0., 0., 0., 0.
         ])))
Exemplo n.º 2
0
    def test_get_event_with_pre_iei(self):
        ts = np.arange(100) + np.random.rand(100) * 0.4
        ts2 = ta.get_event_with_pre_iei(ts, iei=0.8)
        assert (np.min(np.diff(ts2)) > 0.8)

        ts3 = np.arange(20)
        ts3[5] = 6
        ts3[7] = 6
        ts3[1] = 0
        ts4 = ta.get_event_with_pre_iei(ts3, iei=0.5)
        assert (np.array_equal(
            ts4,
            np.array(
                [2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19])))
        ts5 = ta.get_event_with_pre_iei(ts3, iei=1)
        assert (np.array_equal(ts5, np.array([2, 6, 8])))
        np.random.shuffle(ts3)
        ts6 = ta.get_event_with_pre_iei(ts3, iei=0.5)
        print(ts3)
        print(ts6)
        assert (np.array_equal(
            ts6,
            np.array(
                [2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19])))
        ts7 = ta.get_event_with_pre_iei(ts3, iei=1)
        assert (np.array_equal(ts7, np.array([2, 6, 8])))
Exemplo n.º 3
0
    def test_get_burst(self):
        spikes = [
            0.3, 0.5, 0.501, 0.503, 0.505, 0.65, 0.7, 0.73, 0.733, 0.734,
            0.735, 0.9, 1.5, 1.6, 1.602, 1.603, 1.605, 1.94, 1.942
        ]

        _, burst_ind = ta.get_burst(spikes,
                                    pre_isi=(-np.inf, -0.1),
                                    inter_isi=0.004,
                                    spk_num_thr=2)
        assert (np.array_equal(burst_ind, [[1, 4], [13, 4], [17, 2]]))

        _, burst_ind = ta.get_burst(spikes,
                                    pre_isi=(-np.inf, -0.01),
                                    inter_isi=0.004,
                                    spk_num_thr=2)
        assert (np.array_equal(burst_ind, [[1, 4], [7, 4], [13, 4], [17, 2]]))

        _, burst_ind = ta.get_burst(spikes,
                                    pre_isi=(-np.inf, -0.01),
                                    inter_isi=0.002,
                                    spk_num_thr=2)
        assert (np.array_equal(burst_ind, [[1, 2]]))

        _, burst_ind = ta.get_burst(spikes,
                                    pre_isi=(-np.inf, -0.01),
                                    inter_isi=0.004,
                                    spk_num_thr=3)
        assert (np.array_equal(burst_ind, [[1, 4], [7, 4], [13, 4]]))
    def test_haramp(self):
        t = np.arange(1000) * 0.001
        trace = np.sin(t * 2 * 2 * np.pi) + 1
        har = ta.haramp(trace=trace, periods=1, ceil_f=3)
        assert (len(har) == 3)
        assert (har[2] / har[0] == 1.)

        trace = np.zeros(1000)
        trace[np.array([0, 249, 499, 749])] = 1.
        har = ta.haramp(trace=trace, periods=4, ceil_f=4)
        assert (len(har) == 4)
        assert (round(1000. * har[1] / har[0]) / 1000. == 2.)
    def test_threshold_to_intervals(self):
        trace = np.array([2.3, 4.5, 6.7, 5.5, 3.3, 9.2, 4.4, 3.2, 1.0, 0.8, 5.5])

        intvs1 = ta.threshold_to_intervals(trace=trace, thr=5.0, comparison='>=')
        # print(intvs1)
        for intv in intvs1:
            # print(trace[intv[0]: intv[1]])
            assert(np.min(trace[intv[0]: intv[1]]) >= 5.0)

        intvs2 = ta.threshold_to_intervals(trace=trace, thr=3.0, comparison='<')
        for intv in intvs2:
            # print(trace[intv[0]: intv[1]])
            assert(np.max(trace[intv[0]: intv[1]]) < 3.0)
 def test_find_nearest(self):
     trace = np.arange(10)
     assert(ta.find_nearest(trace, 1.4) == 1)
     assert(ta.find_nearest(trace, 1.6) == 2)
     assert(ta.find_nearest(trace, 1.4, -1) == 1)
     assert(ta.find_nearest(trace, 1.6, -1) == 1)
     assert(ta.find_nearest(trace, 1.4, 1) == 2)
     assert(ta.find_nearest(trace, 1.6, 1) == 2)
     assert(ta.find_nearest(trace, -1, -1) is None)
     assert(ta.find_nearest(trace, 11, 1) is None)
                          column=vasMapColumn,row=vasMapRow,frame=vasMapFrame,crop=vasMapCrop,mergeMethod=vasMapMergeMethod)
else:
    print 'No vasculature map find. Taking first frame of movie as vasculature map.'
    vasMap = BinarySlicer(movPath)[0,:,:]

vasMap = ia.array_nor(vasMap).astype(np.float32)

tf.imsave(os.path.join(saveFolder,dateRecorded+'_M'+mouseID+'_Trial'+trialNum+'_vasMap.tif'),vasMap)

_, jphys = ft.importRawNewJPhys(jphysPath,dtype=jphysDtype,headerLength=jphysHeaderLength,channels=jphysChannels,sf=jphysFs)

pd = jphys['photodiode']

displayOnsets = hl.segmentPhotodiodeSignal(pd, digitizeThr=pdDigitizeThr, filterSize=pdFilterSize, segmentThr=pdSegmentThr, Fs=jphysFs)

imgFrameTS = ta.get_onset_timeStamps(jphys['read'], Fs=jphysFs, threshold=readThreshold, onsetType=readOnsetType)

logPath = hl.findLogPath(date=dateRecorded,mouseID=mouseID,stimulus='KSstimAllDir',userID=userID,fileNumber=str(fileNum),displayFolder=dataFolder)

displayInfo = hl.analysisMappingDisplayLog(logPath)

sweepNum = len(displayInfo['B2U']['ind']+displayInfo['U2B']['ind']+displayInfo['L2R']['ind']+displayInfo['R2L']['ind'])
if len(displayOnsets) != sweepNum:
    warningMessage = '\nNumber of detected photodiode onsets ('+str(len(displayOnsets))+') is not equal to display sweep number ('+str(sweepNum)+')!\n'
    warnings.warn(warningMessage)

altPosMap,aziPosMap,altPowerMap,aziPowerMap  = hl.getMappingMovies(movPath=movPath,frameTS=imgFrameTS,
                                                                   displayOnsets=displayOnsets,displayInfo=displayInfo,
                                                                   temporalDownSampleRate=temporalDownSampleRate,
                                                                   saveFolder=saveFolder,
                                                                   savePrefix=dateRecorded+'_M'+mouseID+'_Trial'+trialNum,
Exemplo n.º 8
0
        np.ceil((end_time - start_time) / plane_mean_frame_dur))
    plane_chunk_frame_start = int(np.floor(start_time / plane_mean_frame_dur))
    plane_t = (np.arange(plane_chunk_frame_dur) +
               plane_chunk_frame_start) * plane_mean_frame_dur
    print '{}: STRF time axis: \n{}'.format(plane_n, plane_t)

    plane_roi_traces = []
    trigger_ts = []

    for probe_ind, probe_n in enumerate(probe_ns):

        probe_ts = probe_grp[probe_n]['pd_onset_ts_sec'].value
        probe_traces = []
        probe_trigger_ts = []
        for curr_probe_ts in probe_ts:
            curr_frame_start = ta.find_nearest(
                plane_trace_ts, curr_probe_ts) + plane_chunk_frame_start
            curr_frame_end = curr_frame_start + plane_chunk_frame_dur
            if curr_frame_start >= 0 and curr_frame_end <= len(plane_trace_ts):
                probe_traces.append(
                    plane_traces[:, curr_frame_start:curr_frame_end])
                probe_trigger_ts.append(curr_probe_ts)

        plane_roi_traces.append(np.array(probe_traces))
        trigger_ts.append(probe_trigger_ts)
        print('probe: {} / {}; shape: {}'.format(probe_ind + 1, len(probe_ns),
                                                 np.array(probe_traces).shape))

    # plane_roi_traces = np.array(plane_roi_traces)

    print('saving ...')
    for roi_ind in range(roi_num):
 def test_get_onset_time_stamps(self):
     trace = np.array(([0.] * 5 + [5.] * 5) * 5)
     ts = ta.get_onset_timeStamps(trace, Fs=10000., onsetType='raising')
     assert(ts[2] == 0.0025)
     ts2 = ta.get_onset_timeStamps(trace, Fs=10000., onsetType='falling')
     assert(ts2[2] == 0.0030)