def test_noise(self,thr=1e-6): """ Test noise covariance. """ n,m,D,X,Z = self.n,self.m,self.D,self.X,self.Z k = cov.noise() self.run_verifications(k,thr) d = np.linalg.norm( k(X) - np.eye(n) ) self.assertLessEqual(d,thr) d = np.linalg.norm( k(X,Z) - np.eye(n,m) ) self.assertLessEqual(d,thr)
def test_noise(self, thr=1e-6): """ Test noise covariance. """ n, m, D, X, Z = self.n, self.m, self.D, self.X, self.Z k = cov.noise() self.run_verifications(k, thr) d = np.linalg.norm(k(X) - np.eye(n)) self.assertLessEqual(d, thr) d = np.linalg.norm(k(X, Z) - np.eye(n, m)) self.assertLessEqual(d, thr)
def test_noise(): ''' Tests the noise covariance WN :math:`=\sigma^2 \delta_{x,x^\prime}` ''' f = covs.noise(2.1) cov_train,cov_test = apply_cov(f) expect_cov_train = 4.41*np.eye(3) expect_cov_test = np.zeros((3,2)) expect_cov_test[0][0]= 4.41 np.testing.assert_almost_equal(cov_train, expect_cov_train) np.testing.assert_almost_equal(cov_test, expect_cov_test)