def initialize(self, sim): sim.results.update({'n_dose_0': cvb.Result('No doses', npts=sim['n_days'] + 1, scale=True)}) sim.results.update({'n_dose_1': cvb.Result('1 dose', npts=sim['n_days'] + 1, scale=True)}) sim.results.update({'n_dose_2': cvb.Result('2 dose', npts=sim['n_days'] + 1, scale=True)}) self.initialized = True return
def initialize(self, sim): ''' Fix the dates and store the vaccinations ''' # Handle days self.start_day = sim.day(self.start_day) self.end_day = sim.day(self.end_day) self.days = [self.start_day, self.end_day] # Process daily data self.daily_vaccines = process_daily_data(self.daily_vaccines, sim, self.start_day) # Ensure we have the dose scheduler flag = True for intv in sim['interventions']: if isinstance(intv, dose_scheduler): flag = False if flag: sim['interventions'] += [dose_scheduler()] # Save self.orig_rel_trans = sc.dcp(sim.people.rel_trans) # Keep a copy of pre-vaccination transmission self.orig_symp_prob = sc.dcp(sim.people.symp_prob) # ...and symptom probability # Initialize vaccine info self.vaccinations = np.zeros(sim.n, dtype=cvd.default_int) self.vaccine_take = np.zeros(sim.n, dtype=np.bool) self.vaccination_dates = [[] for p in range(sim.n)] # Store the dates when people are vaccinated sim.results['new_doses'] = cvb.Result(name='New Doses', npts=sim['n_days']+1, color='#ff00ff') self.initialized = True return
def initialize(self, sim): sim.results.update({ 'new_doses': cvb.Result('New doses', npts=sim['n_days'] + 1, scale=True) }) self.initialized = True return
def init_results(self): ''' This is a modification of the superclass function. Mostly it calls the super class function, but it creates a new stock channel. ''' super().init_results() #Create a new stock channel to record the number of students in quaratine *or* isolation; the color is shared # with quarantined. self.results["n_quarantineDorm"] = cvb.Result(name="n_quarantineDorm", npts=self.npts, scale='dynamic', color='#5f1914') return