Exemplo n.º 1
0
    def estimate_tau(self, data, guess_quantile=0.5):
        """
        Select tau value [min] which minimize the score of the metric.

        Args:
            data (pandas.DataFrame):
                Index
                    reset index
                Columns
                    - Date (pd.Timestamp): Observation date
                    - Susceptible(int): the number of susceptible cases
                    - Infected (int): the number of currently infected cases
                    - Fatal(int): the number of fatal cases
                    - Recovered (int): the number of recovered cases
            guess_quantile (float): quantile to guess ODE parameter values for the candidates of tau

        Returns:
            int: estimated tau value [min]

        Raises:
            covsirphy.UnExecutedError: phase information was not set

        Note:
            ODE parameter for each tau value will be guessed by .guess() classmethod of the model.
            Tau value will be selected from the divisors of 1440 [min] and set to self.
        """
        self._ensure_dataframe(data, name="data", columns=self.DSIFR_COLUMNS)
        df = data.loc[:, self.DSIFR_COLUMNS]
        if not self._info_dict:
            raise UnExecutedError("ODEHandler.add()")
        # Calculate scores of tau candidates
        self._ensure_float(guess_quantile, name="quantile")
        calc_f = functools.partial(self._score_tau,
                                   data=df,
                                   quantile=guess_quantile)
        divisors = self.divisors(1440)
        if self._n_jobs == 1:
            scores = [calc_f(candidate) for candidate in divisors]
        else:
            with Pool(self._n_jobs) as p:
                scores = p.map(calc_f, divisors)
        score_dict = {k: v for (k, v) in zip(divisors, scores)}
        # Return the best tau value
        comp_f = {
            True: min,
            False: max
        }[Evaluator.smaller_is_better(metric=self._metric)]
        self._tau = comp_f(score_dict.items(), key=lambda x: x[1])[0]
        return self._tau
Exemplo n.º 2
0
    def fit(self, metric):
        """
        Fit regressors and select the best regressor based on the scores with test dataset.

        Args:
            metric (str): metric name to select the best regressor

        Note:
            All regressors are here.
            - Indicators -> Parameters with Elastic Net
        """
        # All approaches
        approach_dict = {
            _ParamElasticNetRegressor.DESC: self._fit_param_reg(_ParamElasticNetRegressor),
            _RateElasticNetRegressor.DESC: self._fit_param_reg(_RateElasticNetRegressor),
        }
        # Predicted all parameter values must be >= 0
        self._reg_dict = {
            k: v for (k, v) in approach_dict.items()
            if v.predict().ge(0).all().all() and v.predict().le(1).all().all()}
        # Select the best regressor with the metric
        comp_f = {True: min, False: max}[Evaluator.smaller_is_better(metric=metric)]
        self._best, _ = comp_f(self._reg_dict.items(), key=lambda x: x[1].score_test(metric=metric))