Exemplo n.º 1
0
    def __new__(cls, n_seq=4096, n_channels=1, n_outputs=84, legacy=True):
        k = 3 if legacy else 6  # sigh, a mistake... had to add `legacy` flag

        param = [
            (1, 16, k, 2, True),  # Trabelsi et al. (2017) has kernel=6 (L57)
            (16, 32, 3, 2, True),
            (32, 64, 3, 1, True),
            (64, 64, 3, 1, True),
            (64, 128, 3, 1, False),
            (128, 128, 3, 1, True),
        ]

        named_blocks = []
        for j, par in enumerate(param):
            n_seq, blk = cls.one_block(n_seq, *par)
            named_blocks.append((f"bk{j:02d}", blk))

        return torch.nn.Sequential(
            OrderedDict([
                ("cplx", ConcatenatedRealToCplx(copy=False, dim=-2)),
                *named_blocks,
                ("fltn", CplxToCplx[Flatten](-2)),
                ("lin1", cls.Linear(n_seq * 128, 2048)),
                ("relu", CplxToCplx[torch.nn.ReLU]()),
                ("lin2", cls.Linear(2048, n_outputs)),
                ("real", CplxReal()),
            ]))
Exemplo n.º 2
0
    def __new__(cls,
                vgg_name='VGG16',
                n_outputs=10,
                n_channels=3,
                upcast=False,
                half=False):
        if upcast:
            layers = [AsTypeCplx()]
        else:
            layers = [ConcatenatedRealToCplx(copy=False, dim=-3)]

        for x in cfg[vgg_name]:
            if x == 'M':
                layers.append(CplxToCplx[torch.nn.MaxPool2d](kernel_size=2,
                                                             stride=2))

            else:
                x = (x // 2) if half else x
                layers.extend([
                    cls.Conv2d(n_channels, x, kernel_size=3, padding=1),
                    CplxBatchNorm2d(x),
                    CplxToCplx[torch.nn.ReLU](),
                ])
                n_channels = x

        # the last integer x was 512 (or 256).
        return torch.nn.Sequential(*layers, CplxToCplx[Flatten](-3, -1),
                                   cls.Linear(256 if half else 512, n_outputs),
                                   CplxReal())
Exemplo n.º 3
0
 def __new__(cls, n_seq=4096, n_channels=1, n_outputs=84):
     return torch.nn.Sequential(
         OrderedDict([
             # B x C x L float -> B x C/2 x L cplx
             ("cplx", ConcatenatedRealToCplx(copy=False, dim=-2)),
             ("fltn", CplxToCplx[Flatten](1, -1)),
             ("lin1", cls.Linear(n_seq * n_channels, 2048)),
             ("relu", CplxToCplx[torch.nn.ReLU]()),
             ("lin2", cls.Linear(2048, n_outputs)),
             ("real", CplxReal()),
         ]))
Exemplo n.º 4
0
    def __new__(cls, n_outputs=10, n_inputs=1, upcast=False, half=False):
        if upcast:
            layers = [("cplx", AsTypeCplx())]
        else:
            layers = [("cplx", ConcatenatedRealToCplx(copy=False, dim=-3))]

        n_features = 2048 if half else 4096
        layers.extend([
            ("flat_", CplxToCplx[Flatten](-3, -1)),
            ("lin_1", cls.Linear(n_inputs * 28 * 28, n_features)),
            ("relu2", CplxToCplx[torch.nn.ReLU]()),
            ("lin_2", cls.Linear(n_features, n_outputs)),
            ("real", CplxReal()),
        ])
        return torch.nn.Sequential(OrderedDict(layers))
Exemplo n.º 5
0
    def __new__(cls, n_seq=4096, n_channels=1, n_outputs=84):
        n_seq, conv = one_conv(n_seq,
                               cls.Conv1d,
                               n_channels,
                               32,
                               512,
                               16,
                               bias=True)
        n_seq, pool = one_pool(n_seq, torch.nn.AvgPool1d, 4, 2)

        return torch.nn.Sequential(
            OrderedDict([
                ("cplx", ConcatenatedRealToCplx(copy=False, dim=-2)),
                ("conv", conv),
                ("relu", CplxToCplx[torch.nn.ReLU]()),
                ("pool", pool),
                ("fltn", CplxToCplx[Flatten](-2)),
                ("lin1", cls.Linear(n_seq * 32, 2048)),
                ("relu", CplxToCplx[torch.nn.ReLU]()),
                ("lin2", cls.Linear(2048, n_outputs)),
                ("real", CplxReal()),
            ]))
Exemplo n.º 6
0
    def __new__(cls, n_outputs=10, n_inputs=1, upcast=False, half=False):
        if upcast:
            layers = [("cplx", AsTypeCplx())]
        else:
            layers = [("cplx", ConcatenatedRealToCplx(copy=False, dim=-3))]

        n_features = [10, 25, 250] if half else [20, 50, 500]
        layers.extend([
            ("conv1", cls.Conv2d(n_inputs, n_features[0], 5, 1)),
            ("relu1", CplxToCplx[torch.nn.ReLU]()),
            ("pool1", CplxToCplx[torch.nn.AvgPool2d](2, 2)),
            ("conv2", cls.Conv2d(n_features[0], n_features[1], 5, 1)),
            ("relu2", CplxToCplx[torch.nn.ReLU]()),
            ("pool2", CplxToCplx[torch.nn.AvgPool2d](2, 2)),
            ("flat_", CplxToCplx[Flatten](-3, -1)),
            ("lin_1", cls.Linear(4 * 4 * n_features[1], n_features[2])),
            ("relu3", CplxToCplx[torch.nn.ReLU]()),
            ("lin_2", cls.Linear(n_features[2], n_outputs)),
            ("real", CplxReal()),
            # ("real", CplxToConcatenatedReal(dim=-1)),
            # ("lin_3", torch.nn.Linear(20, 10)),
        ])
        return torch.nn.Sequential(OrderedDict(layers))