def test_gradients(): a, b = Tensor.from_builtin([1, 2, 3]), Tensor.from_builtin([[1, 2, 3], [4, 5, 6]]) x, y = coalesce(a, b) x_gradients = Gradients.trace((x * x).sum()) assert np.all(x_gradients[a] == [4, 8, 12]) with pytest.raises(KeyError): x_gradients[b] y_gradients = Gradients.trace((y * y).sum()) assert np.all(y_gradients[b] == [[2, 4, 6], [8, 10, 12]]) with pytest.raises(KeyError): y_gradients[a]
def test_gradients(): logits = Tensor.from_builtin([1, 2, 3]) probabilities = logits.sigmoid() gradients = Gradients._trace( Gradient(tensor=probabilities, gradient=np.array([1, 0, -1])) ) assert np.allclose(gradients[logits], [0.1966, 0, -0.0452], atol=1e-4)
def test_gradients(): left = Tensor.from_builtin([2, 3, 4]) right = Tensor.from_builtin([3, 2, 1]) result = left - right gradients = Gradients._trace(Gradient(tensor=result, gradient=np.array([1, 2, 3]))) assert np.all(gradients[left] == [1, 2, 3]) assert np.all(gradients[right] == [-1, -2, -3])
def test_gradients_full(): logits = Tensor.from_builtin([1, 2, 3]) probabilities = logits.softmax() gradients = Gradients._trace( Gradient(tensor=probabilities, gradient=np.array([1, 0, 0])) ) assert np.allclose(gradients[logits], [0.0819, -0.0220, -0.0599], atol=1e-4)
def test_gradients(): left = Tensor.from_builtin([2, 3, 4]) right = Tensor.from_builtin([3, 2, 1]) result = left / right gradients = Gradients._trace(Gradient(tensor=result, gradient=np.array([1, 2, 3]))) assert np.allclose(gradients[left], [1 / 3, 2 / 2, 3 / 1]) assert np.allclose(gradients[right], [-2 / 9, -6 / 4, -12 / 1])
def test_chain(): tensor = Tensor.from_builtin([1, 2, 3]) output = -ops.sum(tensor) gradients = Gradients.trace(output) assert np.allclose(gradients[tensor], [-1, -1, -1]) assert np.allclose(gradients[output], 1)
def test_accumulate(): start = Tensor.from_builtin([1, 2, 3]) intermediate = start * start end = ops.sum(start - intermediate) gradients = Gradients.trace(end) assert np.allclose(gradients[start], [-1, -3, -5]) assert np.allclose(gradients[intermediate], [-1, -1, -1]) assert np.allclose(gradients[end], 1)
def test_gradients(): tensor = Tensor.from_builtin([2, 3, 4]) low = Tensor.from_builtin([1, 2, 1]) high = Tensor.from_builtin([3, 4, 2]) result = tensor.clip(low, high) gradients = Gradients._trace(Gradient(tensor=result, gradient=np.array([1, 2, 3]))) assert np.allclose(gradients[tensor], [1, 2, 0]) with pytest.raises(KeyError): gradients[low] with pytest.raises(KeyError): gradients[high]
def test_gradients_one_axis(): logits = Tensor.from_builtin([[1, 2, 3], [4, 5, 6]]) probabilities = logits.softmax(1) gradients = Gradients._trace( Gradient(tensor=probabilities, gradient=np.array([[1, 0, 0], [0, 1, 0]])) ) assert np.allclose( gradients[logits], [[0.0819, -0.0220, -0.0599], [-0.0220, 0.1848, -0.1628]], atol=1e-4, )
def test_gradients(): tensor = Tensor.from_builtin([[1, 2], [3, 4]]) batch_norm = BatchNormalization( mean=np.array([4, -1]), variance=np.array([1, 0.25]), persistence=0.9, shift=Tensor.from_builtin([3, 2]), scale=Tensor.from_builtin([1, 1]), ) with BatchNormalization.mode(BatchNormalization.Mode.test): loss = batch_norm(tensor).sum() gradients = Gradients.trace(loss) assert np.allclose(gradients[tensor], [[1, 2], [1, 2]]) assert np.allclose(gradients[batch_norm.shift], [2, 2]) assert np.allclose(gradients[batch_norm.scale], [-4, 16])
def test_train_step(): data = Tensor.from_builtin([[1, 2, 3], [4, 5, 0]]) targets = Tensor.from_builtin([[1, 0], [0, 1]]) weights = Tensor.from_builtin([[2, 0], [1, 1], [0, 3]]) biases = Tensor.from_builtin([-2, -7]) def compute_loss(): logits = matrix_multiply(data, weights) + biases probabilities = logits.softmax(-1) return -(probabilities.log() * targets).sum() loss = compute_loss() gradients = Gradients.trace(loss) weights -= Tensor.from_numpy(gradients[weights]) biases -= Tensor.from_numpy(gradients[biases]) assert compute_loss().data < loss.data