Exemplo n.º 1
0
    def setUpClass(cls):
        mass_con_crnt_obj = crnt4sbml.CRNT("./sbml_files/Fig1Ci.xml")
        cls.mass_con_c_graph_list = cls.generate_c_graph_list(
            mass_con_crnt_obj, True)
        cls.mass_con_low_def_list = cls.generate_low_def_list(
            mass_con_crnt_obj)
        cls.mass_con_list = cls.generate_mass_con_list(mass_con_crnt_obj)

        semi_diff_crnt_obj = crnt4sbml.CRNT("./sbml_files/Fig1Cii.xml")
        cls.semi_diff_c_graph_list = cls.generate_c_graph_list(
            semi_diff_crnt_obj, False)
        cls.semi_diff_low_def_list = cls.generate_low_def_list(
            semi_diff_crnt_obj)
        cls.semi_diff_list = cls.generate_semi_diff_list(semi_diff_crnt_obj)

        low_def_crnt_obj = crnt4sbml.CRNT("./sbml_files/feinberg_ex3_13.xml")
        cls.low_def_c_graph_list = cls.generate_c_graph_list(
            low_def_crnt_obj, False)
        cls.low_def_low_def_list = cls.generate_low_def_list(low_def_crnt_obj)
import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/open_fig5B.xml")

network.basic_report()

network.print_c_graph()

ldt = network.get_low_deficiency_approach()
ldt.report_deficiency_zero_theorem()
ldt.report_deficiency_one_theorem()

approach = network.get_semi_diffusive_approach()
print("")

approach.print_decision_vector()

print("Key species:")
print(approach.get_key_species())
print("")

print("Non key species:")
print(approach.get_non_key_species())

print("")
print("Boundary species:")
print(approach.get_boundary_species())

bounds = [(1e-3, 1e2)]*17

params_for_global_min, obj_fun_val_for_params = approach.run_optimization(bounds=bounds, iterations=50)
import sys
sys.path.insert(0, "..")

import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/conradi_paper.xml")
#network = crnt4sbml.CRNT("../sbml_files/Song2.xml")
#network = crnt4sbml.CRNT("../sbml_files/GuanyuWang.xml")

network.basic_report()

ldt = network.get_low_deficiency_approach()
ldt.report_deficiency_zero_theorem()
ldt.report_deficiency_one_theorem()

opt = network.get_mass_conservation_approach()

#sys.exit()

bounds, concentration_bounds = opt.get_optimization_bounds()

print(bounds)
print(concentration_bounds)

print(opt.get_conservation_laws())
params_for_global_min, obj_fun_val_for_params = opt.run_optimization(
    bounds=bounds, iterations=1000, concentration_bounds=concentration_bounds)

# multistable_param_ind, plot_specifications = opt.run_greedy_continuity_analysis(species="s1", parameters=params_for_global_min,
#                                                                                 auto_parameters={'PrincipalContinuationParameter': 'C2'})
Exemplo n.º 4
0
import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/p85-p110-PTEN.xml")

approach = network.get_mass_conservation_approach()

bounds, concentration_bounds = approach.get_optimization_bounds()

params_for_global_min, obj_fun_val_for_params = approach.run_optimization(
    bounds=bounds,
    iterations=5000,
    concentration_bounds=concentration_bounds,
    parallel_flag=True)

if approach.get_my_rank() == 0:

    network.basic_report()

    network.print_c_graph()

    ldt = network.get_low_deficiency_approach()
    ldt.report_deficiency_zero_theorem()
    ldt.report_deficiency_one_theorem()

    print("")

    print("Decision Vector:")
    print(approach.get_decision_vector())
    print("")

    print("Species for concentration bounds:")
import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/conradi2007.xml")

network.basic_report()

network.print_c_graph()

ldt = network.get_low_deficiency_approach()
ldt.report_deficiency_zero_theorem()
ldt.report_deficiency_one_theorem()

print("")

opt = network.get_mass_conservation_approach()

print("Decision Vector:")
print(opt.get_decision_vector())
print("")

print("Species for concentration bounds:")
print(opt.get_concentration_bounds_species())

bounds = [(1e-2, 1e2)] * 20
concentration_bounds = [(1e-2, 1e2)] * 7

params_for_global_min, obj_fun_val_for_params = opt.run_optimization(
    bounds=bounds, concentration_bounds=concentration_bounds, iterations=100)

multistable_param_ind, plot_specifications = opt.run_continuity_analysis(
    species='s1',
Exemplo n.º 6
0

import numpy
import pandas
import sympy
import scipy.integrate as itg
#from plotnine import ggplot, aes, geom_line, ylim, scale_color_distiller, facet_wrap, theme_bw, geom_path, geom_point
import time
import sys

import sys
sys.path.insert(0, "..")
import crnt4sbml

# 1.
network = crnt4sbml.CRNT("../sbml_files/DoublePhos.xml")
signal = 'C2'
response = 's4'

# 2.
# network = crnt4sbml.CRNT("../sbml_files/Fig4C_closed.xml")

# 3.
#network = crnt4sbml.CRNT("../sbml_files/closed_fig5A.xml")

# 4.
# network = crnt4sbml.CRNT("../sbml_files/irene2014.xml")

# 5.
# network = crnt4sbml.CRNT("../sbml_files/irene2009.xml")
Exemplo n.º 7
0
import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/closed_fig5A.xml")

network.basic_report()

network.print_c_graph()

ldt = network.get_low_deficiency_approach()
ldt.report_deficiency_zero_theorem()
ldt.report_deficiency_one_theorem()

print("")

approach = network.get_mass_conservation_approach()

print("Decision Vector:")
print(approach.get_decision_vector())
print("")

print("Species for concentration bounds:")
print(approach.get_concentration_bounds_species())

bounds = [(1e-2, 1e2)] * 12
concentration_bounds = [(1e-2, 1e2)] * 6

params_for_global_min, obj_fun_val_for_params = approach.run_optimization(
    bounds=bounds, concentration_bounds=concentration_bounds, iterations=100)

multistable_param_ind, plot_specifications = approach.run_continuity_analysis(
    species="s9",
Exemplo n.º 8
0
import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/feinberg_ex3_13.xml")

network.basic_report()

network.print_c_graph()

ldt = network.get_low_deficiency_approach()
ldt.report_deficiency_zero_theorem()
ldt.report_deficiency_one_theorem()

opt = network.get_mass_conservation_approach()

import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/hervagault_canu.xml")

network.basic_report()

network.print_c_graph()

ldt = network.get_low_deficiency_approach()
ldt.report_deficiency_zero_theorem()
ldt.report_deficiency_one_theorem()

print("")

approach = network.get_mass_conservation_approach()

print("Decision Vector:")
print(approach.get_decision_vector())
print("")

print("Species for concentration bounds:")
print(approach.get_concentration_bounds_species())

bounds = [(1e-2, 1e2)] * 11
concentration_bounds = [(1e-2, 1e2)] * 4

params_for_global_min, obj_fun_val_for_params = approach.run_optimization(
    bounds=bounds, concentration_bounds=concentration_bounds, iterations=100)

multistable_param_ind, plot_specifications = approach.run_continuity_analysis(
    species="s1",
Exemplo n.º 10
0
    y_r_matrix = approach.get_y_r_matrix()

    f = io.StringIO()
    with contextlib.redirect_stdout(f):
        approach.print_decision_vector()
    print_decision_vector = f.getvalue()
    f.close()

    return [
        boundary_species, decision_vector, key_species, non_key_species,
        mu_vector, s_to_matrix, symbolic_objective_fun,
        symbolic_polynomial_fun, y_r_matrix, print_decision_vector
    ]


mass_con_crnt_obj = crnt4sbml.CRNT("../sbml_files/Fig1Ci.xml")
mass_con_c_graph_list = generate_c_graph_list(mass_con_crnt_obj, True)
mass_con_low_def_list = generate_low_def_list(mass_con_crnt_obj)
mass_con_list = generate_mass_con_list(mass_con_crnt_obj)

# semi_diff_crnt_obj = crnt4sbml.CRNT("../sbml_files/Fig1Cii.xml")
# semi_diff_c_graph_list = generate_c_graph_list(semi_diff_crnt_obj, False)
# semi_diff_low_def_list = generate_low_def_list(semi_diff_crnt_obj)
# semi_diff_list = generate_semi_diff_list(semi_diff_crnt_obj)
#print(semi_diff_list)

# low_def_crnt_obj = crnt4sbml.CRNT("../sbml_files/feinberg_ex3_13.xml")
# low_def_c_graph_list = generate_c_graph_list(low_def_crnt_obj, False)
# low_def_low_def_list = generate_low_def_list(low_def_crnt_obj)

with open('mass_con_c_graph_list.pickle', 'wb') as outf:
Exemplo n.º 11
0
import sys
sys.path.insert(0, "..")
import crnt4sbml
import numpy
import sympy
import pandas
import scipy.integrate as itg
import dill
from plotnine import ggplot, aes, geom_line, ylim, scale_color_distiller, facet_wrap, theme_bw, geom_path, geom_point, labs, annotate
from matplotlib import rc
rc('text', usetex=True)

# network = crnt4sbml.CRNT("../sbml_files/insulin_signaling_motifs/Nuts_submodel_4c.xml")
# network = crnt4sbml.CRNT("../sbml_files/insulin_signaling_motifs/Nuts_submodel_1.xml")
network = crnt4sbml.CRNT("../sbml_files/insulin_signaling_motifs/Nuts.xml")

signal = "C2"  # "C1"
response = "s11"

# network.basic_report()
# network.print_c_graph()

GA = network.get_general_approach(signal=signal,
                                  response=response,
                                  fix_reactions=False)

# GA = network.get_general_approach()
# print(GA.get_conservation_laws())
# GA.initialize_general_approach(signal=signal, response=response)

print(GA.get_conservation_laws())
import crnt4sbml
import numpy
import pandas
import sympy
import scipy.integrate as itg
from plotnine import ggplot, aes, geom_line, ylim, scale_color_distiller, facet_wrap, theme_bw, geom_path, geom_point

network = crnt4sbml.CRNT("./basic_example_1.xml")
network.print_biological_reaction_types()

ldt = network.get_low_deficiency_approach()
ldt.report_deficiency_zero_theorem()
ldt.report_deficiency_one_theorem()

# optimization approach
opt = network.get_mass_conservation_approach()
opt.generate_report()

# the decision vector
opt.get_decision_vector()

# this function suggests physiological bounds
bounds, concentration_bounds = opt.get_optimization_bounds()

# overwriting with a narrower or wider range. In this case we are setting narrow range for re1c.
bounds[2] = (0.001, 0.01)

# overwriting specie concentration bounds for s4. Concentrations are in pM.
opt.get_concentration_bounds_species()
concentration_bounds[2] = (0.5, 5e2)
import sys

sys.path.insert(0, "..")
import crnt4sbml

network = crnt4sbml.CRNT(
    "../sbml_files/insulin_signaling_motifs/IIS_double_binding.xml")

#network.get_network_graphml()

# network = crnt4sbml.CRNT("../sbml_files/insulin_signaling_motifs/a_b.xml")

#network = crnt4sbml.CRNT("../sbml_files/insulin_signaling_motifs/p85-p110-PTEN_v3.xml")

#network = crnt4sbml.CRNT("../sbml_files/closed_fig5A.xml")

print(network.get_c_graph().get_network_dimensionality_classification())

#sys.exit()

network.basic_report()

network.print_biological_reaction_types()

ldt = network.get_low_deficiency_approach()
ldt.report_deficiency_zero_theorem()
ldt.report_deficiency_one_theorem()

# optimization approach
opt = network.get_mass_conservation_approach()
Exemplo n.º 14
0
plt.switch_backend('agg')

# import matplotlib
# matplotlib.use('Agg')
import sys
sys.path.insert(0, "..")
import crnt4sbml
import numpy
import pandas
import sympy
import scipy.integrate as itg
from plotnine import ggplot, aes, geom_line, ylim, scale_color_distiller, facet_wrap, theme_bw, geom_path, geom_point
import time
import dill

network = crnt4sbml.CRNT("../sbml_files/GuanyuWang.xml")
# network.print_biological_reaction_types()
#
# ldt = network.get_low_deficiency_approach()
# ldt.report_deficiency_zero_theorem()
# ldt.report_deficiency_one_theorem()

#optimization approach
opt = network.get_mass_conservation_approach()
#opt.generate_report()

# the decision vector
opt.get_decision_vector()

# this function suggests physiological bounds
bounds, concentration_bounds = opt.get_optimization_bounds()
Exemplo n.º 15
0
import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/irene2009.xml")

network.basic_report()

network.print_c_graph()

ldt = network.get_low_deficiency_approach()
ldt.report_deficiency_zero_theorem()
ldt.report_deficiency_one_theorem()

print("")

opt = network.get_mass_conservation_approach()

print("Decision Vector:")
print(opt.get_decision_vector())
print("")

print("Species for concentration bounds:")
print(opt.get_concentration_bounds_species())

bounds = [(1e-2, 1e2)] * 10
concentration_bounds = [(1e-2, 1e2)] * 4

params_for_global_min, obj_fun_val_for_params = opt.run_optimization(
    bounds=bounds, concentration_bounds=concentration_bounds, iterations=100)

multistable_param_ind, plot_specifications = opt.run_continuity_analysis(
    species="s3",
Exemplo n.º 16
0
import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/Song.xml")

network.basic_report()

network.print_c_graph()

network.get_network_graphml()

approach = network.get_general_approach()
approach.initialize_general_approach(signal="C1",
                                     response="s2",
                                     fix_reactions=True)

print(approach.get_input_vector())

bnds = [(1e-3, 6.0)] * len(network.get_c_graph().get_reactions()) + [
    (1e-3, 1000.0)
] * len(network.get_c_graph().get_species())

params, obj_fun_vals = approach.run_optimization(bounds=bnds, iterations=100)

multistable_param_ind, plot_specifications = approach.run_greedy_continuity_analysis(
    species="s2",
    parameters=params,
    auto_parameters={'PrincipalContinuationParameter': "C1"})

approach.generate_report()
Exemplo n.º 17
0
import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/Fig4C_open.xml")

network.basic_report()

network.print_c_graph()

ldt = network.get_low_deficiency_approach()
ldt.report_deficiency_zero_theorem()
ldt.report_deficiency_one_theorem()

opt = network.get_semi_diffusive_approach()
print("")

opt.print_decision_vector()

print("Key species:")
print(opt.get_key_species())
print("")

print("Non key species:")
print(opt.get_non_key_species())

print("")
print("Boundary species:")
print(opt.get_boundary_species())

bounds = [(1e-2, 1e2)] * 10

params_for_global_min, obj_fun_val_for_params = opt.run_optimization(
Exemplo n.º 18
0
import crnt4sbml

c = crnt4sbml.CRNT("../sbml_files/Fig1Ci.xml")

opt = c.get_mass_conservation_approach()

print(opt.get_decision_vector())

bnds = [(1e-2, 1e2)] * 12

conc_bnds = [(1e-2, 1e2)] * 7

num_itr = 100

import numpy

sys_min = numpy.finfo(float).eps
sd = 0
prnt_flg = False
num_dtype = numpy.float64

params_for_global_min, obj_fun_val_for_params = opt.run_optimization(
    bounds=bnds,
    concentration_bounds=conc_bnds,
    iterations=num_itr,
    seed=sd,
    print_flag=prnt_flg,
    numpy_dtype=num_dtype,
    sys_min_val=sys_min)

numpy.save('params.npy', params_for_global_min)
Exemplo n.º 19
0
########################################################################
########################################################################
# Please review the documentation provided at crnt4sbml.readthedocs.io #
# before running the code below.                                       #
########################################################################
########################################################################

import crnt4sbml
import numpy

network = crnt4sbml.CRNT("./sbml_files/PrionDoublePhos.xml")

network.print_c_graph()

approach = network.get_general_approach()

signal = "C2"
response = "s11"

approach.initialize_general_approach(signal=signal,
                                     response=response,
                                     fix_reactions=False)

bnds = [(2.4, 2.42), (27.5, 28.1), (2.0, 2.15), (48.25, 48.4), (0.5, 1.1),
        (1.8, 2.1), (17.0, 17.5), (92.4, 92.6), (0.01, 0.025), (0.2, 0.25),
        (0.78, 0.79), (3.6, 3.7), (0.15, 0.25), (0.06, 0.065)] + [(0.0, 100.0),
                                                                  (18.0, 18.5),
                                                                  (0.0, 100.0),
                                                                  (0.0, 100.0),
                                                                  (27.0, 27.1),
                                                                  (8.2, 8.3),
import sys
sys.path.insert(0, "..")
import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/simple_biterminal.xml")

network.print_c_graph()

approach = network.get_general_approach()

signal = "C2"
response = "s11"

approach.initialize_general_approach(signal=signal, response=response, fix_reactions=False)

bnds = [(2.4, 2.42), (27.5, 28.1), (2.0, 2.15), (48.25, 48.4), (0.5, 1.1), (1.8, 2.1), (17.0, 17.5), (92.4, 92.6),
        (0.01, 0.025), (0.2, 0.25), (0.78, 0.79), (3.6, 3.7), (0.15, 0.25), (0.06, 0.065)] + [(0.0, 100.0),
        (18.0, 18.5), (0.0, 100.0), (0.0, 100.0), (27.0, 27.1), (8.2, 8.3), (90.0, 90.1), (97.5, 97.9), (30.0, 30.1)]

# print(network.get_c_graph().get_species())
# print(approach.get_independent_species())
print(network.get_c_graph().get_ode_system())
print("")
print(approach.get_independent_odes())
# print(approach.get_independent_odes_subs())
# import sympy
# print("hi")
print(approach.get_conservation_laws())
#
#
# sys.exit()
Exemplo n.º 21
0
import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/double_insulin_binding.xml")

network.basic_report()

network.print_c_graph()

ldt = network.get_low_deficiency_approach()
ldt.report_deficiency_zero_theorem()
ldt.report_deficiency_one_theorem()

approach = network.get_mass_conservation_approach()

print("Decision Vector:")
print(approach.get_decision_vector())
print("")

print("Species for concentration bounds:")
print(approach.get_concentration_bounds_species())

bounds, concentration_bounds = approach.get_optimization_bounds()

params_for_global_min, obj_fun_val_for_params = approach.run_optimization(
    bounds=bounds, concentration_bounds=concentration_bounds, iterations=100)

multistable_param_ind, plot_specifications = approach.run_greedy_continuity_analysis(
    species="s5",
    parameters=params_for_global_min,
    auto_parameters={'PrincipalContinuationParameter': 'C2'})
Exemplo n.º 22
0
import sys
sys.path.insert(0, "..")

import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/irreversible_switch_2.xml")

network.basic_report()

ldt = network.get_low_deficiency_approach()
ldt.report_deficiency_zero_theorem()
ldt.report_deficiency_one_theorem()

opt = network.get_mass_conservation_approach()



Exemplo n.º 23
0
import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/Fig1Cii.xml")

opt = network.get_semi_diffusive_approach()

bounds = [(1e-3, 1e2)]*12

params_for_global_min, obj_fun_val_for_params = opt.run_optimization(bounds=bounds)

multistable_param_ind, plot_specifications = opt.run_greedy_continuity_analysis(species="s7", parameters=params_for_global_min,
                                                                                auto_parameters={'PrincipalContinuationParameter': 're17'})

opt.generate_report()
########################################################################
########################################################################
# Please review the documentation provided at crnt4sbml.readthedocs.io #
# before running the code below.                                       #
########################################################################
########################################################################

import crnt4sbml
import numpy

network = crnt4sbml.CRNT("./sbml_files/FutileCycle.xml")

approach = network.get_general_approach()
approach.initialize_general_approach(signal="C1",
                                     response="s2",
                                     fix_reactions=True)

bnds = [(1e-3, 6.0)]*len(network.get_c_graph().get_reactions()) + \
       [(1e-3, 1000.0)]*len(network.get_c_graph().get_species())

#######################################################################################################################
#######################################################################################################################
# The code below produces the values for bistability (in parallel): ####
########################################################################
# params, obj_fun_vals = approach.run_optimization(bounds=bnds, iterations=100, parallel_flag=True)
#
# if approach.get_my_rank() == 0:
#
#     import numpy
#     numpy.save('./optimization_parameters/FutileCycle.npy', params)
#######################################################################################################################
Exemplo n.º 25
0
########################################################################
########################################################################
# Please review the documentation provided at crnt4sbml.readthedocs.io #
# before running the code below.                                       #
########################################################################
########################################################################


import crnt4sbml
import numpy

network = crnt4sbml.CRNT("./sbml_files/Edelstein.xml")
signal = "C1"
response = "s5"
iters = 50

GA = network.get_general_approach()
GA.initialize_general_approach(signal=signal, response=response, fix_reactions=True)

bnds = [(1e-2, 1e2)]*len(GA.get_input_vector())

#######################################################################################################################
#######################################################################################################################
# The code below produces the values for bistability (in parallel): ####
########################################################################
# params_for_global_min, obj_fun_vals = GA.run_optimization(bounds=bnds, iterations=iters, seed=0, print_flag=False,
#                                                           dual_annealing_iters=1000, confidence_level_flag=True,
#                                                           parallel_flag=True)
# if GA.get_my_rank() == 0:
#     numpy.save('./optimization_parameters/edelstein_params.npy', params_for_global_min)
#######################################################################################################################
Exemplo n.º 26
0
import crnt4sbml

network = crnt4sbml.CRNT("../sbml_files/Fig4B_closed.xml")

network.basic_report()

network.print_c_graph()

ldt = network.get_low_deficiency_approach()
ldt.report_deficiency_zero_theorem()
ldt.report_deficiency_one_theorem()

print("")

opt = network.get_mass_conservation_approach()

print("Decision Vector:")
print(opt.get_decision_vector())
print("")

print("Species for concentration bounds:")
print(opt.get_concentration_bounds_species())

bounds = [(1e-2, 1e2)]*11
concentration_bounds = [(1e-2, 1e2)]*3

params_for_global_min, obj_fun_val_for_params = opt.run_optimization(bounds=bounds,
                                                                     concentration_bounds=concentration_bounds,
                                                                     iterations=10000)

opt.generate_report()
Exemplo n.º 27
0
import pandas
import scipy.integrate as itg
import dill
from plotnine import ggplot, aes, geom_line, ylim, scale_color_distiller, facet_wrap, theme_bw, geom_path, geom_point, labs, annotate
from matplotlib import rc
rc('text', usetex=True)

# network = crnt4sbml.CRNT("../sbml_files/insulin_signaling_motifs/simple_biterminal.xml")
# network = crnt4sbml.CRNT("../sbml_files/insulin_signaling_motifs/simple_biterminal_v2.xml")
# network = crnt4sbml.CRNT("../sbml_files/insulin_signaling_motifs/Nuts.xml")  # No, but zero value found
# network = crnt4sbml.CRNT("../sbml_files/insulin_signaling_motifs/Nuts_submodel_1.xml")  # Yes
# network = crnt4sbml.CRNT("../sbml_files/insulin_signaling_motifs/Nuts_submodel_2.xml")  # No, bifurcation and limit points found and zero value found
# network = crnt4sbml.CRNT("../sbml_files/insulin_signaling_motifs/Nuts_submodel_3.xml")

# network = crnt4sbml.CRNT("../sbml_files/insulin_signaling_motifs/Nuts_submodel_4c.xml")
network = crnt4sbml.CRNT(
    "../sbml_files/insulin_signaling_motifs/Nuts_submodel_1.xml")
# network = crnt4sbml.CRNT("../sbml_files/insulin_signaling_motifs/Nuts_submodel_4d.xml")

#network = crnt4sbml.CRNT("../sbml_files/insulin_signaling_motifs/subspace_strange.xml")

signal = "C1"
response = "s11"

# network = crnt4sbml.CRNT("../sbml_files/two_dim_tk.xml")
# signal = "C1"
# response = "s1"

network.basic_report()
network.print_c_graph()

GA = network.get_general_approach(signal=signal,
Exemplo n.º 28
0
# import sys
# sys.path.insert(0, "..")
import crnt4sbml
import numpy

network = crnt4sbml.CRNT(
    "../sbml_files/insulin_signaling_motifs/a_b.xml")  # yes 10
signal = "C1"
response = "s5"
iters = 50

# network = crnt4sbml.CRNT("../sbml_files/Fig1Ci.xml")
# signal = "C3"
# response = "s15"

network.basic_report()
network.print_c_graph()

GA = network.get_general_approach()
GA.initialize_general_approach(signal=signal,
                               response=response,
                               fix_reactions=True)

import sympy
from sympy import *

# species = GA.get_independent_species()
# print(GA.get_independent_species())

# re5, re5r, re6, re6r, re7, re7r = sympy.symbols('re5, re5r, re6, re6r, re7, re7r', positive=True)
#