Exemplo n.º 1
0
def createProblem(gait_phase):
    robot_model = example_robot_data.loadHyQ().model
    lfFoot, rfFoot, lhFoot, rhFoot = 'lf_foot', 'rf_foot', 'lh_foot', 'rh_foot'
    gait = SimpleQuadrupedalGaitProblem(robot_model, lfFoot, rfFoot, lhFoot,
                                        rhFoot)
    q0 = robot_model.referenceConfigurations['standing'].copy()
    v0 = pinocchio.utils.zero(robot_model.nv)
    x0 = np.concatenate([q0, v0])

    type_of_gait = list(gait_phase.keys())[0]
    value = gait_phase[type_of_gait]
    if type_of_gait == 'walking':
        # Creating a walking problem
        problem = gait.createWalkingProblem(x0, value['stepLength'],
                                            value['stepHeight'],
                                            value['timeStep'],
                                            value['stepKnots'],
                                            value['supportKnots'])
    elif type_of_gait == 'trotting':
        # Creating a trotting problem
        problem = gait.createTrottingProblem(x0, value['stepLength'],
                                             value['stepHeight'],
                                             value['timeStep'],
                                             value['stepKnots'],
                                             value['supportKnots'])
    elif type_of_gait == 'pacing':
        # Creating a pacing problem
        problem = gait.createPacingProblem(x0, value['stepLength'],
                                           value['stepHeight'],
                                           value['timeStep'],
                                           value['stepKnots'],
                                           value['supportKnots'])
    elif type_of_gait == 'bounding':
        # Creating a bounding problem
        problem = gait.createBoundingProblem(x0, value['stepLength'],
                                             value['stepHeight'],
                                             value['timeStep'],
                                             value['stepKnots'],
                                             value['supportKnots'])
    elif type_of_gait == 'jumping':
        # Creating a jumping problem
        problem = gait.createJumpingProblem(x0, value['jumpHeight'],
                                            value['jumpLength'],
                                            value['timeStep'],
                                            value['groundKnots'],
                                            value['flyingKnots'])

    xs = [robot_model.defaultState] * (len(problem.runningModels) + 1)
    us = [
        m.quasiStatic(d, robot_model.defaultState)
        for m, d in list(zip(problem.runningModels, problem.runningDatas))
    ]
    return xs, us, problem
Exemplo n.º 2
0
anymal = example_robot_data.loadANYmal()
lims = anymal.model.effortLimit
lims *= 0.4  # reduced artificially the torque limits
anymal.model.effortLimit = lims
lims = anymal.model.velocityLimit
lims *= 0.5
anymal.model.velocityLimit = lims

# Defining the initial state of the robot
q0 = anymal.model.referenceConfigurations['standing'].copy()
v0 = pinocchio.utils.zero(anymal.model.nv)
x0 = np.concatenate([q0, v0])

# Setting up the 3d walking problem
lfFoot, rfFoot, lhFoot, rhFoot = 'LF_FOOT', 'RF_FOOT', 'LH_FOOT', 'RH_FOOT'
gait = SimpleQuadrupedalGaitProblem(anymal.model, lfFoot, rfFoot, lhFoot,
                                    rhFoot)

# Defining the walking gait parameters
jumping_gait = {
    'jumpHeight': 0.15,
    'jumpLength': [0.3, 0., 0.],
    'timeStep': 1e-2,
    'groundKnots': 20,
    'flyingKnots': 20
}

cameraTF = [2., 2.68, 0.84, 0.2, 0.62, 0.72, 0.22]

# Creating a both solvers
boxfddp = crocoddyl.SolverBoxFDDP(
    gait.createJumpingProblem(x0, jumping_gait['jumpHeight'],
import pinocchio
from crocoddyl.utils.quadruped import SimpleQuadrupedalGaitProblem, plotSolution

WITHDISPLAY = 'display' in sys.argv or 'CROCODDYL_DISPLAY' in os.environ
WITHPLOT = 'plot' in sys.argv or 'CROCODDYL_PLOT' in os.environ

# Loading the anymal model
anymal = example_robot_data.load('anymal')
robot_model = anymal.model
lims = robot_model.effortLimit
lims *= 0.5  # reduced artificially the torque limits
robot_model.effortLimit = lims

# Setting up the 3d walking problem
lfFoot, rfFoot, lhFoot, rhFoot = 'LF_FOOT', 'RF_FOOT', 'LH_FOOT', 'RH_FOOT'
gait = SimpleQuadrupedalGaitProblem(robot_model, lfFoot, rfFoot, lhFoot, rhFoot)

# Defining the initial state of the robot
q0 = robot_model.referenceConfigurations['standing'].copy()
v0 = pinocchio.utils.zero(robot_model.nv)
x0 = np.concatenate([q0, v0])

# Defining the walking gait parameters
walking_gait = {'stepLength': 0.25, 'stepHeight': 0.25, 'timeStep': 1e-2, 'stepKnots': 25, 'supportKnots': 2}

# Setting up the control-limited DDP solver
boxddp = crocoddyl.SolverBoxDDP(
    gait.createWalkingProblem(x0, walking_gait['stepLength'], walking_gait['stepHeight'], walking_gait['timeStep'],
                              walking_gait['stepKnots'], walking_gait['supportKnots']))

# Add the callback functions
Exemplo n.º 4
0
from crocoddyl.utils.quadruped import SimpleQuadrupedalGaitProblem, plotSolution

WITHDISPLAY = 'display' in sys.argv or 'CROCODDYL_DISPLAY' in os.environ
WITHPLOT = 'plot' in sys.argv or 'CROCODDYL_PLOT' in os.environ

# Loading the anymal model
anymal = example_robot_data.loadANYmal()

# Defining the initial state of the robot
q0 = anymal.model.referenceConfigurations['standing'].copy()
v0 = pinocchio.utils.zero(anymal.model.nv)
x0 = np.concatenate([q0, v0])

# Setting up the 3d walking problem
lfFoot, rfFoot, lhFoot, rhFoot = 'LF_FOOT', 'RF_FOOT', 'LH_FOOT', 'RH_FOOT'
gait = SimpleQuadrupedalGaitProblem(anymal.model, lfFoot, rfFoot, lhFoot,
                                    rhFoot)

# Setting up all tasks
GAITPHASES = [{
    'walking': {
        'stepLength': 0.25,
        'stepHeight': 0.15,
        'timeStep': 1e-2,
        'stepKnots': 25,
        'supportKnots': 2
    }
}, {
    'trotting': {
        'stepLength': 0.15,
        'stepHeight': 0.1,
        'timeStep': 1e-2,
Exemplo n.º 5
0
    def generateTrajectory(self, **kwargs):
        import time
        import crocoddyl
        from crocoddyl.utils.quadruped import SimpleQuadrupedalGaitProblem, plotSolution

        # Load parameters of the trajectory
        self.setParametersFromDict(**kwargs)

        # Loading the solo model
        solo = loadSolo(False)
        robot_model = solo.model

        # Set limits of actuators speeds and efforts
        robot_model.effortLimit[6:] = np.full(12,
                                              self.getParameter('torque_lim'))
        robot_model.velocityLimit[6:] = np.tile(
            np.deg2rad(self.getParameter('speed_lim')), 4)

        # Setting up CoM problem
        lfFoot, rfFoot, lhFoot, rhFoot = 'FL_FOOT', 'FR_FOOT', 'HL_FOOT', 'HR_FOOT'
        gait = SimpleQuadrupedalGaitProblem(robot_model, lfFoot, rfFoot,
                                            lhFoot, rhFoot)

        # Defining the initial state of the robot
        q0 = robot_model.referenceConfigurations['standing'].copy()
        v0 = pin.utils.zero(robot_model.nv)
        x0 = np.concatenate([q0, v0])

        # Defining the CoM gait parameters
        Jumping_gait = {}
        Jumping_gait['jumpHeight'] = self.getParameter('height')
        Jumping_gait['jumpLength'] = [
            self.getParameter('dx'),
            self.getParameter('dy'),
            self.getParameter('dz')
        ]
        Jumping_gait['timeStep'] = self.getParameter('dt')
        Jumping_gait['groundKnots'] = self.getParameter('groundKnots')
        Jumping_gait['flyingKnots'] = self.getParameter('flyingKnots')

        # Setting up the control-limited DDP solver
        boxddp = crocoddyl.SolverBoxDDP(
            gait.createJumpingProblem(x0, Jumping_gait['jumpHeight'],
                                      Jumping_gait['jumpLength'],
                                      Jumping_gait['timeStep'],
                                      Jumping_gait['groundKnots'],
                                      Jumping_gait['flyingKnots']))

        # Print debug info if requiered
        t0 = time.time()
        if self.getParameter('debug'):
            print("Computing Trajectory...")
            self.printInfo()

        # Add the callback functions if requiered
        if self.getParameter('verbose'):
            boxddp.setCallbacks([crocoddyl.CallbackVerbose()])

        # Setup viewer if requiered
        cameraTF = [2., 2.68, 0.84, 0.2, 0.62, 0.72, 0.22]
        if self.getParameter('gepetto_viewer'):
            display = crocoddyl.GepettoDisplay(
                solo,
                4,
                4,
                cameraTF,
                frameNames=[lfFoot, rfFoot, lhFoot, rhFoot])
            boxddp.setCallbacks([
                crocoddyl.CallbackVerbose(),
                crocoddyl.CallbackDisplay(display)
            ])

        xs = [robot_model.defaultState] * (boxddp.problem.T + 1)
        us = boxddp.problem.quasiStatic([solo.model.defaultState] *
                                        boxddp.problem.T)

        # Solve the DDP problem
        boxddp.solve(xs, us, self.getParameter('nb_it'), False, 0.1)

        # Display the entire motion
        if self.getParameter('gepetto_viewer'):
            display = crocoddyl.GepettoDisplay(
                solo, frameNames=[lfFoot, rfFoot, lhFoot, rhFoot])
            while True:
                display.displayFromSolver(boxddp)

        # Get results from solver
        xs, us = boxddp.xs, boxddp.us
        nx, nq, nu = xs[0].shape[0], robot_model.nq, us[0].shape[0]
        X = [0.] * nx
        U = [0.] * nu

        for i in range(nx):
            X[i] = [np.asscalar(x[i]) for x in xs]
        for i in range(nu):
            U[i] = [np.asscalar(u[i]) if u.shape[0] != 0 else 0 for u in us]

        qa = np.array(X[7:nq])[:, :-1]
        qa_dot = np.array(X[nq + 6:2 * nq - 1])[:, :-1]
        torques = np.array(U[:])
        t_traj = np.arange(0, qa.shape[1]) * self.getParameter('dt')

        # Print execution time if requiered
        if self.getParameter('debug'):
            print("Done in", time.time() - t0, "s")

        # Define trajectory for return
        traj = ActuatorsTrajectory()
        traj.addElement('t', t_traj)
        traj.addElement('q', qa)
        traj.addElement('q_dot', qa_dot)
        traj.addElement('torques', torques)

        return traj
Exemplo n.º 6
0
def runBenchmark(gait_phase):
    robot_model = example_robot_data.loadHyQ().model
    lfFoot, rfFoot, lhFoot, rhFoot = 'lf_foot', 'rf_foot', 'lh_foot', 'rh_foot'
    gait = SimpleQuadrupedalGaitProblem(robot_model, lfFoot, rfFoot, lhFoot,
                                        rhFoot)
    q0 = robot_model.referenceConfigurations['half_sitting'].copy()
    v0 = pinocchio.utils.zero(robot_model.nv)
    x0 = np.concatenate([q0, v0])

    type_of_gait = list(gait_phase.keys())[0]
    value = gait_phase[type_of_gait]
    if type_of_gait == 'walking':
        # Creating a walking problem
        ddp = crocoddyl.SolverDDP(
            gait.createWalkingProblem(x0, value['stepLength'],
                                      value['stepHeight'], value['timeStep'],
                                      value['stepKnots'],
                                      value['supportKnots']))
    elif type_of_gait == 'trotting':
        # Creating a trotting problem
        ddp = crocoddyl.SolverDDP(
            gait.createTrottingProblem(x0, value['stepLength'],
                                       value['stepHeight'], value['timeStep'],
                                       value['stepKnots'],
                                       value['supportKnots']))
    elif type_of_gait == 'pacing':
        # Creating a pacing problem
        ddp = crocoddyl.SolverDDP(
            gait.createPacingProblem(x0, value['stepLength'],
                                     value['stepHeight'], value['timeStep'],
                                     value['stepKnots'],
                                     value['supportKnots']))
    elif type_of_gait == 'bounding':
        # Creating a bounding problem
        ddp = crocoddyl.SolverDDP(
            gait.createBoundingProblem(x0, value['stepLength'],
                                       value['stepHeight'], value['timeStep'],
                                       value['stepKnots'],
                                       value['supportKnots']))
    elif type_of_gait == 'jumping':
        # Creating a jumping problem
        ddp = crocoddyl.SolverDDP(
            gait.createJumpingProblem(x0, value['jumpHeight'],
                                      value['timeStep']))

    duration = []
    xs = [robot_model.defaultState] * len(ddp.models())
    us = [
        m.quasicStatic(d, robot_model.defaultState)
        for m, d in list(zip(ddp.models(), ddp.datas()))[:-1]
    ]
    for i in range(T):
        c_start = time.time()
        ddp.solve(xs, us, MAXITER, False, 0.1)
        c_end = time.time()
        duration.append(1e3 * (c_end - c_start))

    avrg_duration = sum(duration) / len(duration)
    min_duration = min(duration)
    max_duration = max(duration)
    return avrg_duration, min_duration, max_duration