Exemplo n.º 1
0
    def createPseudoImpulseModel(self, supportFootIds, swingFootTask):
        """ Action model for pseudo-impulse models.

        A pseudo-impulse model consists of adding high-penalty cost for the contact velocities.
        :param supportFootIds: Ids of the constrained feet
        :param swingFootTask: swinging foot task
        :return pseudo-impulse differential action model
        """
        # Creating a 3D multi-contact model, and then including the supporting
        # foot
        contactModel = crocoddyl.ContactModelMultiple(self.state,
                                                      self.actuation.nu)
        for i in supportFootIds:
            xref = crocoddyl.FrameTranslation(i, np.array([0., 0., 0.]))
            supportContactModel = crocoddyl.ContactModel3D(
                self.state, xref, self.actuation.nu, np.array([0., 50.]))
            contactModel.addContact(self.rmodel.frames[i].name + "_contact",
                                    supportContactModel)

        # Creating the cost model for a contact phase
        costModel = crocoddyl.CostModelSum(self.state, self.actuation.nu)
        for i in supportFootIds:
            cone = crocoddyl.FrictionCone(self.nsurf, self.mu, 4, False)
            frictionCone = crocoddyl.CostModelContactFrictionCone(
                self.state,
                crocoddyl.ActivationModelQuadraticBarrier(
                    crocoddyl.ActivationBounds(cone.lb, cone.ub)),
                crocoddyl.FrameFrictionCone(i, cone), self.actuation.nu)
            costModel.addCost(self.rmodel.frames[i].name + "_frictionCone",
                              frictionCone, 1e1)
        if swingFootTask is not None:
            for i in swingFootTask:
                xref = crocoddyl.FrameTranslation(i.frame, i.oMf.translation)
                vref = crocoddyl.FrameMotion(i.frame, pinocchio.Motion.Zero())
                footTrack = crocoddyl.CostModelFrameTranslation(
                    self.state, xref, self.actuation.nu)
                impulseFootVelCost = crocoddyl.CostModelFrameVelocity(
                    self.state, vref, self.actuation.nu)
                costModel.addCost(
                    self.rmodel.frames[i.frame].name + "_footTrack", footTrack,
                    1e7)
                costModel.addCost(
                    self.rmodel.frames[i.frame].name + "_impulseVel",
                    impulseFootVelCost, 1e6)
        stateWeights = np.array([0.] * 3 + [500.] * 3 + [0.01] *
                                (self.rmodel.nv - 6) + [10.] * self.rmodel.nv)
        stateReg = crocoddyl.CostModelState(
            self.state, crocoddyl.ActivationModelWeightedQuad(stateWeights**2),
            self.rmodel.defaultState, self.actuation.nu)
        ctrlReg = crocoddyl.CostModelControl(self.state, self.actuation.nu)
        costModel.addCost("stateReg", stateReg, 1e1)
        costModel.addCost("ctrlReg", ctrlReg, 1e-3)

        # Creating the action model for the KKT dynamics with simpletic Euler
        # integration scheme
        dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(
            self.state, self.actuation, contactModel, costModel, 0., True)
        model = crocoddyl.IntegratedActionModelEuler(dmodel, 0.)
        return model
Exemplo n.º 2
0
    def createSwingFootModel(self, timeStep, supportFootIds, comTask=None, swingFootTask=None):
        """ Action model for a swing foot phase.

        :param timeStep: step duration of the action model
        :param supportFootIds: Ids of the constrained feet
        :param comTask: CoM task
        :param swingFootTask: swinging foot task
        :return action model for a swing foot phase
        """
        # Creating a 3D multi-contact model, and then including the supporting
        # foot
        contactModel = crocoddyl.ContactModelMultiple(self.state, self.actuation.nu)

        for i in supportFootIds:
            xref = crocoddyl.FrameTranslation(i, np.array([0., 0., 0.]))
            supportContactModel = crocoddyl.ContactModel3D(self.state, xref, self.actuation.nu, np.array([0., 50.]))
            contactModel.addContact(self.rmodel.frames[i].name + "_contact", supportContactModel)

        # Creating the cost model for a contact phase
        costModel = crocoddyl.CostModelSum(self.state, self.actuation.nu)
        if isinstance(comTask, np.ndarray):
            comTrack = crocoddyl.CostModelCoMPosition(self.state, comTask, self.actuation.nu)
            costModel.addCost("comTrack", comTrack, 1e6)
        for i in supportFootIds:
            cone = crocoddyl.FrictionCone(self.nsurf, self.mu, 4, False)
            frictionCone = crocoddyl.CostModelContactFrictionCone(
                self.state, crocoddyl.ActivationModelQuadraticBarrier(crocoddyl.ActivationBounds(cone.lb, cone.ub)),
                crocoddyl.FrameFrictionCone(i, cone), self.actuation.nu)
            costModel.addCost(self.rmodel.frames[i].name + "_frictionCone", frictionCone, 1e1)
        if swingFootTask is not None:
            for i in swingFootTask:
                xref = crocoddyl.FrameTranslation(i.id, i.placement.translation)
                footTrack = crocoddyl.CostModelFrameTranslation(self.state, xref, self.actuation.nu)
                costModel.addCost(self.rmodel.frames[i.id].name + "_footTrack", footTrack, 1e6)

        stateWeights = np.array([0.] * 3 + [500.] * 3 + [0.01] * (self.rmodel.nv - 6) + [10.] * 6 + [1.] *
                                (self.rmodel.nv - 6))
        stateReg = crocoddyl.CostModelState(self.state, crocoddyl.ActivationModelWeightedQuad(stateWeights**2),
                                            self.rmodel.defaultState, self.actuation.nu)
        ctrlReg = crocoddyl.CostModelControl(self.state, self.actuation.nu)
        costModel.addCost("stateReg", stateReg, 1e1)
        costModel.addCost("ctrlReg", ctrlReg, 1e-1)

        lb = np.concatenate([self.state.lb[1:self.state.nv + 1], self.state.lb[-self.state.nv:]])
        ub = np.concatenate([self.state.ub[1:self.state.nv + 1], self.state.ub[-self.state.nv:]])
        stateBounds = crocoddyl.CostModelState(
            self.state, crocoddyl.ActivationModelQuadraticBarrier(crocoddyl.ActivationBounds(lb, ub)),
            0 * self.rmodel.defaultState, self.actuation.nu)
        costModel.addCost("stateBounds", stateBounds, 1e3)

        # Creating the action model for the KKT dynamics with simpletic Euler
        # integration scheme
        dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(self.state, self.actuation, contactModel,
                                                                     costModel, 0., True)
        model = crocoddyl.IntegratedActionModelEuler(dmodel, timeStep)
        return model
Exemplo n.º 3
0
    def createSwingFootModel(self, timeStep, supportFootIds, comTask=None, swingFootTask=None):
        """ Action model for a swing foot phase.

        :param timeStep: step duration of the action model
        :param supportFootIds: Ids of the constrained feet
        :param comTask: CoM task
        :param swingFootTask: swinging foot task
        :return action model for a swing foot phase
        """
        # Creating a 6D multi-contact model, and then including the supporting
        # foot
        contactModel = crocoddyl.ContactModelMultiple(self.state, self.actuation.nu)
        for i in supportFootIds:
            Mref = crocoddyl.FramePlacement(i, pinocchio.SE3.Identity())
            supportContactModel = \
                crocoddyl.ContactModel6D(self.state, Mref, self.actuation.nu, np.matrix([0., 0.]).T)
            contactModel.addContact(self.rmodel.frames[i].name + "_contact", supportContactModel)

        # Creating the cost model for a contact phase
        costModel = crocoddyl.CostModelSum(self.state, self.actuation.nu)
        if isinstance(comTask, np.ndarray):
            comTrack = crocoddyl.CostModelCoMPosition(self.state, comTask, self.actuation.nu)
            costModel.addCost("comTrack", comTrack, 1e6)
        for i in supportFootIds:
            cone = crocoddyl.FrictionCone(self.nsurf, self.mu, 4, False)
            frictionCone = crocoddyl.CostModelContactFrictionCone(
                self.state, crocoddyl.ActivationModelQuadraticBarrier(crocoddyl.ActivationBounds(cone.lb, cone.ub)),
                crocoddyl.FrameFrictionCone(i, cone), self.actuation.nu)
            costModel.addCost(self.rmodel.frames[i].name + "_frictionCone", frictionCone, 1e1)
        if swingFootTask is not None:
            for i in swingFootTask:
                footTrack = crocoddyl.CostModelFramePlacement(self.state, i, self.actuation.nu)
                costModel.addCost(self.rmodel.frames[i.frame].name + "_footTrack", footTrack, 1e6)

        stateWeights = np.array([0] * 3 + [500.] * 3 + [0.01] * (self.state.nv - 6) + [10] * self.state.nv)
        stateReg = crocoddyl.CostModelState(self.state,
                                            crocoddyl.ActivationModelWeightedQuad(np.matrix(stateWeights**2).T),
                                            self.rmodel.defaultState, self.actuation.nu)
        ctrlReg = crocoddyl.CostModelControl(self.state, self.actuation.nu)
        costModel.addCost("stateReg", stateReg, 1e1)
        costModel.addCost("ctrlReg", ctrlReg, 1e-1)

        # Creating the action model for the KKT dynamics with simpletic Euler
        # integration scheme
        dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(self.state, self.actuation, contactModel,
                                                                     costModel, 0., True)
        model = crocoddyl.IntegratedActionModelEuler(dmodel, timeStep)
        return model
Exemplo n.º 4
0
    ROBOT_STATE,
    crocoddyl.FrameTranslation(ROBOT_MODEL.getFrameId('l_sole'),
                               pinocchio.SE3.Random().translation),
    ACTUATION.nu, pinocchio.utils.rand(2))
CONTACTS.addContact("r_sole_contact", CONTACT_6D)
CONTACTS.addContact("l_sole_contact", CONTACT_3D)
COSTS = crocoddyl.CostModelSum(ROBOT_STATE, ACTUATION.nu)

frictionCone = crocoddyl.FrictionCone(np.matrix([0., 0., 1.]).T, 0.7, 4, False)
activation = crocoddyl.ActivationModelQuadraticBarrier(
    crocoddyl.ActivationBounds(frictionCone.lb, frictionCone.ub))
COSTS.addCost(
    "r_sole_friction_cone",
    crocoddyl.CostModelContactFrictionCone(
        ROBOT_STATE, activation,
        crocoddyl.FrameFrictionCone(ROBOT_MODEL.getFrameId('r_sole'),
                                    frictionCone), ACTUATION.nu), 1.)
COSTS.addCost(
    "l_sole_friction_cone",
    crocoddyl.CostModelContactFrictionCone(
        ROBOT_STATE, activation,
        crocoddyl.FrameFrictionCone(ROBOT_MODEL.getFrameId('l_sole'),
                                    frictionCone), ACTUATION.nu), 1.)
MODEL = crocoddyl.DifferentialActionModelContactFwdDynamics(
    ROBOT_STATE, ACTUATION, CONTACTS, COSTS, 0., True)
DATA = MODEL.createData()

# Created DAM numdiff
MODEL_ND = crocoddyl.DifferentialActionModelNumDiff(MODEL)
MODEL_ND.disturbance *= 10
dnum = MODEL_ND.createData()
Exemplo n.º 5
0
    np.array([0.,
              1 / dt]))  # makes the velocity drift disappear in one timestep
contactModel.addContact("foot_contact", supportContactModel)

# FRICTION CONE
# the friction cone can also have the [min, maximum] force parameters
# 4 is the number of faces for the approximation
mu = 0.7
normalDirection = np.array([0, 0, 1])
minForce = 0
maxForce = 200
cone = crocoddyl.FrictionCone(normalDirection, mu, 4, True, minForce, maxForce)
coneBounds = crocoddyl.ActivationBounds(cone.lb, cone.ub)
coneActivation = crocoddyl.ActivationModelWeightedQuadraticBarrier(
    coneBounds, np.array([1, 1, 0, 0]))
frameFriction = crocoddyl.FrameFrictionCone(footFrameID, cone)
frictionCone = crocoddyl.CostModelContactFrictionCone(state, coneActivation,
                                                      frameFriction,
                                                      actuation.nu)

# Creating the action model for the KKT dynamics with simpletic Euler integration scheme
contactCostModel = crocoddyl.CostModelSum(state, actuation.nu)
# contactCostModel.addCost('frictionCone', frictionCone, 1e-6)
contactCostModel.addCost('joule_dissipation', joule_dissipation, 5e-3)
contactCostModel.addCost('joint_friction', joint_friction, 5e-3)
contactCostModel.addCost('velocityRegularization', v2, 1e-1)
contactCostModel.addCost('nonPenetration', nonPenetration, 1e5)
contactDifferentialModel = crocoddyl.DifferentialActionModelContactFwdDynamics(
    state,
    actuation,
    contactModel,