Exemplo n.º 1
0
    def analyze(self,
                M_c,
                T,
                X_L,
                X_D,
                kernel_list=(),
                n_steps=1,
                c=(),
                r=(),
                max_iterations=-1,
                max_time=-1):
        """Evolve the latent state by running MCMC transition kernels

        :param M_c: The column metadata
        :type M_c: dict
        :param T: The data table in mapped representation (all floats, generated
                  by data_utils.read_data_objects)
        :param X_L: the latent variables associated with the latent state
        :type X_L: dict
        :param X_D: the particular cluster assignments of each row in each view
        :type X_D: list of lists
        :param kernel_list: names of the MCMC transition kernels to run
        :type kernel_list: list of strings
        :param n_steps: the number of times to run each MCMC transition kernel
        :type n_steps: int
        :param c: the (global) column indices to run MCMC transition kernels on
        :type c: list of ints
        :param r: the (global) row indices to run MCMC transition kernels on
        :type r: list of ints
        :param max_iterations: the maximum number of times ot run each MCMC
                               transition kernel. Applicable only if
                               max_time != -1.
        :type max_iterations: int
        :param max_time: the maximum amount of time (seconds) to run MCMC
                         transition kernels for before stopping to return
                         progress
        :type max_time: float
        :returns: X_L, X_D -- the evolved latent state

        """

        if not xu.get_is_multistate(X_L, X_D):
            SEED = self.get_next_seed()
            X_L_prime, X_D_prime = _do_analyze(M_c, T, X_L, X_D, kernel_list,
                                               n_steps, c, r, max_iterations,
                                               max_time, SEED)
            return X_L_prime, X_D_prime
        else:
            X_L_prime_list = []
            X_D_prime_list = []
            for X_L_i, X_D_i in zip(X_L, X_D):
                SEED = self.get_next_seed()
                X_L_i_prime, X_D_i_prime = _do_analyze(M_c, T, X_L_i, X_D_i,
                                                       kernel_list, n_steps, c,
                                                       r, max_iterations,
                                                       max_time, SEED)
                X_L_prime_list.append(X_L_i_prime)
                X_D_prime_list.append(X_D_i_prime)
            return X_L_prime_list, X_D_prime_list
Exemplo n.º 2
0
    def analyze(self, M_c, T, X_L, X_D, kernel_list=(), n_steps=1, c=(), r=(),
                max_iterations=-1, max_time=-1):
        """Evolve the latent state by running MCMC transition kernels

        :param M_c: The column metadata
        :type M_c: dict
        :param T: The data table in mapped representation (all floats, generated
                  by data_utils.read_data_objects)
        :param X_L: the latent variables associated with the latent state
        :type X_L: dict
        :param X_D: the particular cluster assignments of each row in each view
        :type X_D: list of lists
        :param kernel_list: names of the MCMC transition kernels to run
        :type kernel_list: list of strings
        :param n_steps: the number of times to run each MCMC transition kernel
        :type n_steps: int
        :param c: the (global) column indices to run MCMC transition kernels on
        :type c: list of ints
        :param r: the (global) row indices to run MCMC transition kernels on
        :type r: list of ints
        :param max_iterations: the maximum number of times ot run each MCMC
                               transition kernel. Applicable only if
                               max_time != -1.
        :type max_iterations: int
        :param max_time: the maximum amount of time (seconds) to run MCMC
                         transition kernels for before stopping to return
                         progress
        :type max_time: float
        :returns: X_L, X_D -- the evolved latent state

        """

        if not xu.get_is_multistate(X_L, X_D):
            SEED = self.get_next_seed()
            X_L_prime, X_D_prime = _do_analyze(M_c, T, X_L, X_D,
                    kernel_list, n_steps, c, r,
                    max_iterations, max_time,
                    SEED)
            return X_L_prime, X_D_prime
        else:
            seeds = [self.get_next_seed() for seed_idx in range(len(X_L))]
            args = itertools.izip(
                    itertools.cycle([M_c]),
                    itertools.cycle([T]),
                    X_L, X_D,
                    itertools.cycle([kernel_list]),
                    itertools.cycle([n_steps]),
                    itertools.cycle([c]),
                    itertools.cycle([r]),
                    itertools.cycle([max_iterations]),
                    itertools.cycle([max_time]),
                    seeds,
                    )
            result = self.pool.map_async(_do_analyze2, args)
            X_L_prime_list, X_D_prime_list = zip(*result.get())
            return X_L_prime_list, X_D_prime_list
Exemplo n.º 3
0
    def analyze(self, M_c, T, X_L, X_D, kernel_list=(), n_steps=1, c=(), r=(),
                max_iterations=-1, max_time=-1):
        """Evolve the latent state by running MCMC transition kernels

        :param M_c: The column metadata
        :type M_c: dict
        :param T: The data table in mapped representation (all floats, generated
                  by data_utils.read_data_objects)
        :param X_L: the latent variables associated with the latent state
        :type X_L: dict
        :param X_D: the particular cluster assignments of each row in each view
        :type X_D: list of lists
        :param kernel_list: names of the MCMC transition kernels to run
        :type kernel_list: list of strings
        :param n_steps: the number of times to run each MCMC transition kernel
        :type n_steps: int
        :param c: the (global) column indices to run MCMC transition kernels on
        :type c: list of ints
        :param r: the (global) row indices to run MCMC transition kernels on
        :type r: list of ints
        :param max_iterations: the maximum number of times ot run each MCMC
                               transition kernel. Applicable only if
                               max_time != -1.
        :type max_iterations: int
        :param max_time: the maximum amount of time (seconds) to run MCMC
                         transition kernels for before stopping to return
                         progress
        :type max_time: float
        :returns: X_L, X_D -- the evolved latent state

        """

        if not xu.get_is_multistate(X_L, X_D):
            SEED = self.get_next_seed()
            X_L_prime, X_D_prime = _do_analyze(M_c, T, X_L, X_D,
                    kernel_list, n_steps, c, r,
                    max_iterations, max_time,
                    SEED)
            return X_L_prime, X_D_prime
        else:
            X_L_prime_list = []
            X_D_prime_list = []
            for X_L_i, X_D_i in zip(X_L, X_D):
                SEED = self.get_next_seed()
                X_L_i_prime, X_D_i_prime = _do_analyze(M_c, T, X_L_i, X_D_i,
                        kernel_list, n_steps, c, r,
                        max_iterations, max_time,
                        SEED)
                X_L_prime_list.append(X_L_i_prime)
                X_D_prime_list.append(X_D_i_prime)
            return X_L_prime_list, X_D_prime_list
Exemplo n.º 4
0
    def analyze(self, M_c, T, X_L, X_D, kernel_list=(), n_steps=1, c=(), r=(),
                max_iterations=-1, max_time=-1, **kwargs):  
        """Evolve the latent state by running MCMC transition kernels

        :param M_c: The column metadata
        :type M_c: dict
        :param T: The data table in mapped representation (all floats, generated
                  by data_utils.read_data_objects)
        :type T: list of lists
        :param X_L: the latent variables associated with the latent state
        :type X_L: dict
        :param X_D: the particular cluster assignments of each row in each view
        :type X_D: list of lists
        :param kernel_list: names of the MCMC transition kernels to run
        :type kernel_list: list of strings
        :param n_steps: the number of times to run each MCMC transition kernel
        :type n_steps: int
        :param c: the (global) column indices to run MCMC transition kernels on
        :type c: list of ints
        :param r: the (global) row indices to run MCMC transition kernels on
        :type r: list of ints
        :param max_iterations: the maximum number of times ot run each MCMC
                               transition kernel. Applicable only if
                               max_time != -1.
        :type max_iterations: int
        :param max_time: the maximum amount of time (seconds) to run MCMC
                         transition kernels for before stopping to return
                         progress
        :type max_time: float
        :param kwargs: optional arguments to pass to hadoop_line_processor.jar.
                       Currently, presence of a 'chunk_size' kwarg causes
                       different behavior.
        :returns: X_L, X_D -- the evolved latent state
        
        """

        output_path = self.output_path
        input_filename = self.input_filename
        table_data_filename = self.table_data_filename
        analyze_args_dict_filename = self.command_dict_filename
        xu.assert_vpn_is_connected()
        #
        table_data = dict(M_c=M_c, T=T)
        analyze_args_dict = dict(command='analyze', kernel_list=kernel_list,
                                 n_steps=n_steps, c=c, r=r, max_time=max_time)
        # chunk_analyze is a special case of analyze
        if 'chunk_size' in kwargs:
          chunk_size = kwargs['chunk_size']
          chunk_filename_prefix = kwargs['chunk_filename_prefix']
          chunk_dest_dir = kwargs['chunk_dest_dir']
          analyze_args_dict['command'] = 'chunk_analyze'
          analyze_args_dict['chunk_size'] = chunk_size
          analyze_args_dict['chunk_filename_prefix'] = chunk_filename_prefix
          # WARNING: chunk_dest_dir MUST be writeable by hadoop user mapred
          analyze_args_dict['chunk_dest_dir'] = chunk_dest_dir
        if not xu.get_is_multistate(X_L, X_D):
            X_L = [X_L]
            X_D = [X_D]
        #
        SEEDS = kwargs.get('SEEDS', None)
        xu.write_analyze_files(input_filename, X_L, X_D,
                               table_data, table_data_filename,
                               analyze_args_dict, analyze_args_dict_filename,
                               SEEDS)
        os.system('cp %s analyze_input' % input_filename)
        n_tasks = len(X_L)
        self.send_hadoop_command(n_tasks)
        was_successful = self.get_hadoop_results()
        hadoop_output = None
        if was_successful:
          hu.copy_hadoop_output(output_path, 'analyze_output')
          X_L_list, X_D_list = hu.read_hadoop_output(output_path)
          hadoop_output = X_L_list, X_D_list
        return hadoop_output