Exemplo n.º 1
0
    def __repr__(self):
        """Returns a representation of the tensor useful for debugging."""
        from crypten.debug import debug_mode

        share = self.share
        plain_text = self._tensor.get_plain_text() if debug_mode(
        ) else "HIDDEN"
        ptype = self.ptype
        return (f"MPCTensor(\n\t_tensor={share}\n"
                f"\tplain_text={plain_text}\n\tptype={ptype}\n)")
Exemplo n.º 2
0
    def div_(self, y):
        """Divide two tensors element-wise"""
        # TODO: Add test coverage for this code path (next 4 lines)
        if isinstance(y, float) and int(y) == y:
            y = int(y)
        if is_float_tensor(y) and y.frac().eq(0).all():
            y = y.long()

        if isinstance(y, int) or is_int_tensor(y):
            if debug_mode():
                tolerance = 1.0
                tensor = self.get_plain_text()

            # Truncate protocol for dividing by public integers:
            if comm.get().get_world_size() > 2:
                wraps = self.wraps()
                self.share //= y
                # NOTE: The multiplication here must be split into two parts
                # to avoid long out-of-bounds when y <= 2 since (2 ** 63) is
                # larger than the largest long integer.
                self -= wraps * 4 * (int(2 ** 62) // y)
            else:
                self.share //= y

            if debug_mode():
                if not torch.lt(
                    torch.abs(self.get_plain_text() * y - tensor), tolerance
                ).all():
                    raise ValueError("Final result of division is incorrect.")

            return self

        # Otherwise multiply by reciprocal
        if isinstance(y, float):
            y = torch.tensor([y], dtype=torch.float, device=self.device)

        assert is_float_tensor(y), "Unsupported type for div_: %s" % type(y)
        return self.mul_(y.reciprocal())