Exemplo n.º 1
0
 def test_price_minute(self):
     coin = 'BTC'
     curr = 'USD'
     price = cryptocompare.get_historical_price_minute(
         coin, currency=curr, limit=3, exchange='CCCAGG', toTs=datetime.datetime.now())
     for frame in price:
         self.assertIn('time', frame)
Exemplo n.º 2
0
 def test_get_historical_price_minute_custom_limit(self):
     res = cryptocompare.get_historical_price_minute(coins[2], limit=90)
     self.assertTrue('Data' in res.keys(), "expected 'Data'")
     # XXX: cryptocompare is off-by-one
     self.assertEqual(
         91, len(res['Data']),
         "expected limit to match days returned, got {}".format(
             len(res['Data'])))
Exemplo n.º 3
0
 def test_get_historical_price_minute_non_default_currency(self):
     res = cryptocompare.get_historical_price_minute(coins[1],
                                                     currency='USD',
                                                     limit=10)
     self.assertTrue('Data' in res.keys(), "expected 'Data'")
     # XXX: cryptocompare is off-by-one
     self.assertEqual(
         11, len(res['Data']),
         "expected limit to match days returned, got {}".format(
             len(res['Data'])))
Exemplo n.º 4
0
def get_history(ticker, port):

    socks.set_default_proxy(socks.PROXY_TYPE_SOCKS5, '127.0.0.1', port)
    socket.socket = socks.socksocket

    day_30 = cryptocompare.get_historical_price_day(ticker,
                                                    curr='USD',
                                                    limit=30)
    day_3 = cryptocompare.get_historical_price_hour(ticker,
                                                    curr='USD',
                                                    limit=3 * 24)
    hour_1 = cryptocompare.get_historical_price_minute(ticker,
                                                       curr='USD',
                                                       limit=60)

    for o, file_name in [(day_30, f"data/{ticker}_30.json"),
                         (day_3, f"data/{ticker}_3.json"),
                         (hour_1, f"data/{ticker}_1.json")]:
        if o is not None:
            with open(file_name, 'w') as f:
                json.dump(o, f)
    time.sleep(1.5)
Exemplo n.º 5
0
    def get_historical(self,
                       coin,
                       time_step,
                       nod,
                       end=datetime.now(),
                       columns=['close'],
                       currency="USD",
                       add_this_moment_price=False):
        """
        :param: coin: It should be symbol. e.x 'BTC'
        :param: time_step: It can be 'day' for price history in last days, 'hour' for ... and 'min' for ...
        :param: nod: Number of dates. Actually number of rows in returned dataframe(Except when add_this_moment_price is True)
        :param: end: Default is today date. But can pass a date to recive data from nod days before end to end day
        :param: columns: A list of columns from ['high', 'low', 'open', 'volumefrom', 'volumeto', 'close']. 
                        And if it is 'OHLC', columns will be consideres as ['open', 'high', 'low', 'close'].
        :param: add_this_moment_price: Only works when columns=['close']. Adds this moment's price to dataframe.
        :param: currency: currency unit
        :returns: A dataframe with index of time laps and columns passed
        """
        if columns == "OHLC":  #Famous open, high, low, close dataframe for candle bars
            columns = ['open', 'high', 'low', 'close']
        if columns == "OHLCV":
            columns = ['open', 'high', 'low', 'close', 'volumeto']
        if time_step == "day":
            data = cc.get_historical_price_day(coin,
                                               currency,
                                               limit=nod,
                                               toTs=end)
        elif time_step == "hour":
            data = cc.get_historical_price_hour(coin,
                                                currency,
                                                limit=nod,
                                                toTs=end)
        elif time_step == "min":
            data = cc.get_historical_price_minute(coin,
                                                  currency,
                                                  limit=nod,
                                                  toTs=end)
        else:
            raise ValueError(
                "Only 'day', 'hour' and 'min' are valid as time_stamp")

        df = pd.DataFrame.from_dict(
            data)  #converting json like recived data to a pandas df
        index = [datetime.fromtimestamp(tstamp) for tstamp in df.time]
        dates = [t + timedelta(seconds=510 * 60 - 21)
                 for t in index]  # Converting timelaps to Tehran time zone
        df.index = dates

        if add_this_moment_price:
            if columns == ['close'] and time_step == "min":
                #Adding this moment's price to tail
                price = cc.get_price(coin, currency)[coin][currency]
                t = datetime.now()
                now_df = pd.DataFrame({"close": price}, index=[t])
                df = df.append(now_df)
            else:
                raise ValueError(
                    "add_this_moment_price will only work when dataframe is a price table and time_step is 'min'"
                )
        return df[columns]
Exemplo n.º 6
0
def main():
    analyzer = SentimentIntensityAnalyzer()
    tweets = []  #Stores the tweets
    dates = []  #Stores the dates of the tweets
    arr_compound = []  # Stores the compund of the sentiment Analysis.
    arr_positive = []  #Stores the positives of the sentiment Analysis.
    arr_neutral = []  #Stores de neutral values of the sentiment Analysis.
    arr_negative = []  #Store the negative values of the Sentiment Analysis.

    #Getting the crypto information
    crypto_data = cryptocompare.get_historical_price_minute('BTC',
                                                            curr='EUR',
                                                            limit=1)
    date = datetime.datetime.fromtimestamp(
        crypto_data[0]['time']).strftime('%d-%m-%Y %H:%M:%S')
    open_price = crypto_data[0]['open']
    close_price = crypto_data[0]['close']
    high = crypto_data[0]['high']
    low = crypto_data[0]['low']
    volume_from = crypto_data[0]['volumefrom']
    gain = compare(crypto_data[0]['close'], crypto_data[1]['close'])
    print(
        "================================================================================="
    )
    print('Crypto info date: ', date)
    #Getting the tweets form the API.
    for tweet in tweepy.Cursor(api.search,
                               q='Bitcoin -giving -Giveaway',
                               lang='en').items(10):
        tweets.append(tweet.text)
        dates.append(tweet.created_at)
        print('Tweet date: ', tweet.created_at)

    for tweet in tweets:
        print(
            "================================================================================="
        )
        vs = analyzer.polarity_scores(tweet)
        print(tweet)

        #Getting the values from the Sentiment Analysis.
        full_result = "{:-<65} {}".format(tweet, str(vs))
        result = full_result.split('{')
        split_result = str(result[1]).split(':')
        params = str(split_result).split(',')
        full_neg = str(params[1]).split('"')
        neg = full_neg[1]
        full_neu = str(params[3]).split('"')
        neu = full_neu[1]
        full_pos = str(params[5]).split('"')
        pos = full_pos[1]
        full_comp = str(params[7]).split('}')
        split_comp = str(full_comp[0]).split()
        comp = split_comp[1]
        #Storing the values of the analysis.
        arr_compound.append(comp)
        arr_positive.append(pos)
        arr_neutral.append(neu)
        arr_negative.append(neg)

        print('Negative: ', neg)
        print('Neutral: ', neu)
        print('Positive: ', pos)
        print('Compound: ', comp)

    compound = process(arr_compound, 'compound')
    positive = process(arr_positive, 'positive')
    negative = process(arr_negative, 'negative')
    neutral = process(arr_neutral, 'neutral')

    #Creating the object to write in the csv file.
    with open('Results.csv', mode='a') as csv_file:
        fieldnames = [
            'date', 'negative', 'neutral', 'positive', 'compound', 'open',
            'close', 'high', 'low', 'volume_from', 'gain'
        ]
        writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
        record(writer, date, compound, negative, neutral, positive, open_price,
               close_price, high, low, volume_from, gain)
Exemplo n.º 7
0
 def test_get_historical_price_minute_from_exchange_and_aggregation(self):
     res = cryptocompare.get_historical_price_minute('ETH',
                                                     currency='BTC',
                                                     exchange='Cryptopia',
                                                     aggregate=5)
     self.assertTrue('Data' in res.keys(), "expected 'Data'")
Exemplo n.º 8
0
 def test_get_historical_price_minute(self):
     res = cryptocompare.get_historical_price_minute(coins[0])
     self.assertTrue('Data' in res.keys(), "expected 'Data'")
     # XXX: cryptocompare is off-by-one
     self.assertEqual(31, len(res['Data']),
                      "response data limit defaults to 31 days")
Exemplo n.º 9
0
print(cryptocompare.get_price(coins[1], curr=['EUR','USD','GBP'], full=True))

print('==================================================')
print(cryptocompare.get_price(coins))
print(cryptocompare.get_price(coins, curr='USD'))
print(cryptocompare.get_price(coins, curr=['EUR','USD','GBP']))

print('==================== HIST PRICE ==================')
print(cryptocompare.get_historical_price(coins[0]))
print(cryptocompare.get_historical_price(coins[0], curr='USD'))
print(cryptocompare.get_historical_price(coins[1], curr=['EUR','USD','GBP']))
print(cryptocompare.get_historical_price(coins[1], 'USD', datetime.datetime.now()))
print(cryptocompare.get_historical_price(coins[2], ['EUR','USD','GBP'], time.time(), exchange='Kraken'))

print('================== HIST PRICE MINUTE ===============')
print(cryptocompare.get_historical_price_minute(coins[0], curr='USD'))
print(cryptocompare.get_historical_price_minute(coins[0], curr='USD', limit=100))

print('================== HIST PRICE HOUR ===============')
print(cryptocompare.get_historical_price_hour(coins[0]))
print(cryptocompare.get_historical_price_hour(coins[0], curr='USD'))
print(cryptocompare.get_historical_price_hour(coins[1], curr=['EUR','USD','GBP']))

print('================== HIST PRICE DAY ================')
print(cryptocompare.get_historical_price_day(coins[0]))
print(cryptocompare.get_historical_price_day(coins[0], curr='USD'))
print(cryptocompare.get_historical_price_day(coins[1], curr=['EUR','USD','GBP']))

print('======================== AVG =====================')
print(cryptocompare.get_avg(coins[0], exchange='Coinbase'))
print(cryptocompare.get_avg(coins[0], curr='USD', exchange='Coinbase'))
Exemplo n.º 10
0
def get_btc_prices(coin="BTC"):
    raw = cryptocompare.get_historical_price_minute(coin, "USD", 60)
    for row in raw["Data"]:
        row["time"] = datetime.fromtimestamp(row["time"])
    return raw["Data"]