def style_transfer(content_image,
                   style_image,
                   image_size,
                   style_size,
                   content_layer,
                   content_weight,
                   style_layers,
                   style_weights,
                   tv_weight,
                   init_random=False):
    content_img = preprocess_image(load_image(content_image, size=image_size))
    feats = model.extract_features(model.image)
    content_target = sess.run(feats[content_layer],
                              {model.image: content_img[None]})
    # Extract features from the style image
    style_img = preprocess_image(load_image(style_image, size=style_size))
    style_feat_vars = [feats[idx] for idx in style_layers]
    style_target_vars = []
    # Compute list of TensorFlow Gram matrices
    for style_feat_var in style_feat_vars:
        style_target_vars.append(gram_matrix(style_feat_var))
    # Compute list of NumPy Gram matrices by evaluating the TensorFlow graph on the style image
    style_targets = sess.run(style_target_vars, {model.image: style_img[None]})
    # Initialize generated image to content image
    if init_random:
        img_var = tf.Variable(tf.random_uniform(content_img[None].shape, 0, 1),
                              name="image")
    else:
        img_var = tf.Variable(content_img[None], name="image")
    # Extract features on generated image
    feats = model.extract_features(img_var)
    # Compute loss
    c_loss = content_loss(content_weight, feats[content_layer], content_target)
    s_loss = style_loss(feats, style_layers, style_targets, style_weights)
    t_loss = tv_loss(img_var, tv_weight)
    loss = c_loss + s_loss + t_loss
    # Set up optimization hyperparameters
    initial_lr = 3.0
    decayed_lr = 0.1
    decay_lr_at = 180
    max_iter = 200
    # Create and initialize the Adam optimizer
    lr_var = tf.Variable(initial_lr, name="lr")
    # Create train_op that updates the generated image when run
    with tf.variable_scope("optimizer") as opt_scope:
        train_op = tf.train.AdamOptimizer(lr_var).minimize(loss,
                                                           var_list=[img_var])
    # Initialize the generated image and optimization variables
    opt_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                 scope=opt_scope.name)
    sess.run(tf.variables_initializer([lr_var, img_var] + opt_vars))
    # Create an op that will clamp the image values when run
    clamp_image_op = tf.assign(img_var, tf.clip_by_value(img_var, -1.5, 1.5))
    f, axarr = plt.subplots(1, 2)
    axarr[0].axis('off')
    axarr[1].axis('off')
    axarr[0].set_title('Content Source Img.')
    axarr[1].set_title('Style Source Img.')
    axarr[0].imshow(deprocess_image(content_img))
    axarr[1].imshow(deprocess_image(style_img))
    plt.show()
    plt.figure()
    # Hardcoded handcrafted
    for t in range(max_iter):
        # Take an optimization step to update img_var
        sess.run(train_op)
        if t < decay_lr_at:
            sess.run(clamp_image_op)
        if t == decay_lr_at:
            sess.run(tf.assign(lr_var, decayed_lr))
        if t % 100 == 0:
            print('Iteration {}'.format(t))
            img = sess.run(img_var)
            plt.imshow(deprocess_image(img[0], rescale=True))
            plt.axis('off')
            plt.show()
    print('Iteration {}'.format(t))
    img = sess.run(img_var)
    plt.imshow(deprocess_image(img[0], rescale=True))
    plt.axis('off')
    plt.show()
check_scipy()

from cs231n.classifiers.squeezenet import SqueezeNet
import tensorflow as tf

tf.reset_default_graph()  # remove all existing variables in the graph
sess = get_session()  # start a new Session

# Load pretrained SqueezeNet model
SAVE_PATH = 'cs231n/datasets/squeezenet.ckpt'
# if not os.path.exists(SAVE_PATH):
#     raise ValueError("You need to download SqueezeNet!")
model = SqueezeNet(save_path=SAVE_PATH, sess=sess)

# Load data for testing
content_img_test = preprocess_image(load_image('styles/tubingen.jpg',
                                               size=192))[None]
style_img_test = preprocess_image(
    load_image('styles/starry_night.jpg', size=192))[None]
answers = np.load('style-transfer-checks-tf.npz')


def content_loss(content_weight, content_current, content_original):
    shapes = tf.shape(content_current)
    F_l = tf.reshape(content_current, [shapes[1], shapes[2] * shapes[3]])
    P_l = tf.reshape(content_original, [shapes[1], shapes[2] * shapes[3]])
    loss = content_weight * (tf.reduce_sum((F_l - P_l)**2))
    return loss


def content_loss_test(correct):
    content_layer = 3
Exemplo n.º 3
0
if __name__ == "__main__":
    check_scipy()

    tf.reset_default_graph()  # remove all existing variables in the graph
    sess = get_session()  # start a new Session

    # Load pretrained SqueezeNet model
    SAVE_PATH = 'cs231n/datasets/squeezenet.ckpt'
    if not os.path.exists(SAVE_PATH + ".index"):
        raise ValueError("You need to download SqueezeNet!")
    model = SqueezeNet(save_path=SAVE_PATH, sess=sess)

    # Load data for testing
    content_img_test = preprocess_image(
        load_image('styles/tubingen.jpg', size=192))[None]
    style_img_test = preprocess_image(
        load_image('styles/starry_night.jpg', size=192))[None]

    answers = np.load('style-transfer-checks-tf.npz')

    # content_loss_test(answers['cl_out'])

    # gram_matrix_test(answers['gm_out'])

    # style_loss_test(answers['sl_out'])

    # tv_loss_test(answers['tv_out'])

    # Composition VII + Tubingen
    # params1 = {
Exemplo n.º 4
0
def style_transfer(content_image,
                   style_image,
                   image_size,
                   style_size,
                   content_layer,
                   content_weight,
                   style_layers,
                   style_weights,
                   tv_weight,
                   init_random=False):
    """Run style transfer!
    
    Inputs:
    - content_image: filename of content image
    - style_image: filename of style image
    - image_size: size of smallest image dimension (used for content loss and generated image)
    - style_size: size of smallest style image dimension
    - content_layer: layer to use for content loss
    - content_weight: weighting on content loss
    - style_layers: list of layers to use for style loss
    - style_weights: list of weights to use for each layer in style_layers
    - tv_weight: weight of total variation regularization term
    - init_random: initialize the starting image to uniform random noise
    """
    # Extract features from the content image
    content_img = preprocess_image(load_image(content_image, size=image_size))
    feats = extract_features(content_img[None], model)
    content_target = feats[content_layer]

    # Extract features from the style image
    style_img = preprocess_image(load_image(style_image, size=style_size))
    s_feats = extract_features(style_img[None], model)
    style_targets = []
    # Compute list of TensorFlow Gram matrices
    for idx in style_layers:
        style_targets.append(gram_matrix(s_feats[idx]))

    # Set up optimization hyperparameters
    initial_lr = 3.0
    decayed_lr = 0.1
    decay_lr_at = 180
    max_iter = 200

    step = tf.Variable(0, trainable=False)
    boundaries = [decay_lr_at]
    values = [initial_lr, decayed_lr]
    learning_rate_fn = tf.keras.optimizers.schedules.PiecewiseConstantDecay(
        boundaries, values)

    # Later, whenever we perform an optimization step, we pass in the step.
    learning_rate = learning_rate_fn(step)

    optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

    # Initialize the generated image and optimization variables

    f, axarr = plt.subplots(1, 2)
    axarr[0].axis('off')
    axarr[1].axis('off')
    axarr[0].set_title('Content Source Img.')
    axarr[1].set_title('Style Source Img.')
    axarr[0].imshow(deprocess_image(content_img))
    axarr[1].imshow(deprocess_image(style_img))
    plt.show()
    plt.figure()

    # Initialize generated image to content image
    if init_random:
        initializer = tf.random_uniform_initializer(0, 1)
        img = initializer(shape=content_img[None].shape)
        img_var = tf.Variable(img)
        print("Intializing randomly.")
    else:
        img_var = tf.Variable(content_img[None])
        print("Initializing with content image.")

    for t in range(max_iter):
        with tf.GradientTape() as tape:
            tape.watch(img_var)
            feats = extract_features(img_var, model)
            # Compute loss
            c_loss = content_loss(content_weight, feats[content_layer],
                                  content_target)
            s_loss = style_loss(feats, style_layers, style_targets,
                                style_weights)
            t_loss = tv_loss(img_var, tv_weight)
            loss = c_loss + s_loss + t_loss
        # Compute gradient
        grad = tape.gradient(loss, img_var)
        optimizer.apply_gradients([(grad, img_var)])

        img_var.assign(tf.clip_by_value(img_var, -1.5, 1.5))

        if t % 10 == 0:
            print('Iteration {}'.format(t))
            #plt.imshow(deprocess_image(img_var[0].numpy(), rescale=True))
            #plt.axis('off')
            #plt.show()

    print('Iteration {}'.format(t))
    plt.imshow(deprocess_image(img_var[0].numpy(), rescale=True))
    plt.axis('off')
    plt.show()
Exemplo n.º 5
0
def style_transfer(content_image, style_image, output_image, image_size, style_size, content_layer, content_weight,
                   style_layers, style_weights, tv_weight, init_random = False, sess=sess, model=model):
    """Run style transfer!

    Inputs:
    - content_image: filename of content image
    - style_image: filename of style image
    - output_image: filename to write to
    - image_size: size of smallest image dimension (used for content loss and generated image)
    - style_size: size of smallest style image dimension
    - content_layer: layer to use for content loss
    - content_weight: weighting on content loss
    - style_layers: list of layers to use for style loss
    - style_weights: list of weights to use for each layer in style_layers
    - tv_weight: weight of total variation regularization term
    - init_random: initialize the starting image to uniform random noise
    """
    # Extract features from the content image
    content_img = preprocess_image(load_image(content_image, size=image_size))
    feats = model.extract_features(model.image)
    content_target = sess.run(feats[content_layer],
                              {model.image: content_img[None]})

    # Extract features from the style image
    style_img = preprocess_image(load_image(style_image, size=style_size))
    style_feat_vars = [feats[idx] for idx in style_layers]
    style_target_vars = []
    # Compute list of TensorFlow Gram matrices
    for style_feat_var in style_feat_vars:
        style_target_vars.append(gram_matrix(style_feat_var))
    # Compute list of NumPy Gram matrices by evaluating the TensorFlow graph on the style image
    style_targets = sess.run(style_target_vars, {model.image: style_img[None]})

    # Initialize generated image to content image

    if init_random:
        img_var = tf.Variable(tf.random_uniform(content_img[None].shape, 0, 1), name="image")
    else:
        img_var = tf.Variable(content_img[None], name="image")

    # Extract features on generated image
    feats = model.extract_features(img_var)
    # Compute loss
    c_loss = content_loss(content_weight, feats[content_layer], content_target)
    s_loss = style_loss(feats, style_layers, style_targets, style_weights)
    t_loss = tv_loss(img_var, tv_weight)
    loss = c_loss + s_loss + t_loss

    # Set up optimization hyperparameters
    initial_lr = 3.0
    decayed_lr = 0.1
    decay_lr_at = 180
    max_iter = 100

    # Create and initialize the Adam optimizer
    lr_var = tf.Variable(initial_lr, name="lr")
    # Create train_op that updates the generated image when run
    with tf.variable_scope("optimizer") as opt_scope:
        train_op = tf.train.AdamOptimizer(lr_var).minimize(loss, var_list=[img_var])
    # Initialize the generated image and optimization variables
    opt_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=opt_scope.name)
    sess.run(tf.variables_initializer([lr_var, img_var] + opt_vars))
    # Create an op that will clamp the image values when run
    clamp_image_op = tf.assign(img_var, tf.clip_by_value(img_var, -1.5, 1.5))

    if output_image[-4:] == '.jpg':
        output_image = output_image[:-4]

    # Hardcoded handcrafted
    for t in range(0, max_iter+1):
        # Take an optimization step to update img_var
        sess.run(train_op)
        if t < decay_lr_at:
            sess.run(clamp_image_op)
        if t == decay_lr_at:
            sess.run(tf.assign(lr_var, decayed_lr))
        if t % 25 == 0:
            print('Iteration {}'.format(t))
            img = sess.run(img_var)
            cv2.imwrite(output_image + "_iter" + str(t) + ".jpg", deprocess_image(img[0]))
Exemplo n.º 6
0
    - gram: Tensor of shape (N, C, C) giving the (optionally normalized)
      Gram matrices for the input image.
    """
    features_shape = tf.shape(features)
    features_T = tf.transpose(features, perm=[0, 3, 2, 1])
    mult = tf.batch_matmul(features_T, features)
    if normalize:
        mult = tf.scalar_mul(tf.reciprocal(tf.cast(features_shape[1]*features_shape[2]*features_shape[3], tf.float32)), mult)
    return mult


style_layers = [1, 4, 6, 7]
style_weights = [2000000, 800, 12, 1]
style_feats = model.extract_features(model.image)
# TODO: make this a dynamic tensor
style_img = preprocess_image(load_image('./styles/van_gogh.jpg'))
style_feat_vars = [style_feats[idx] for idx in [1, 4, 6, 7]]
style_target_vars = []
# Compute list of TensorFlow Gram matrices
for style_feat_var in style_feat_vars:
	style_target_vars.append(gram_matrix(style_feat_var))
# Compute list of NumPy Gram matrices by evaluating the TensorFlow graph on the style image
style_targets = sess.run(style_target_vars, {model.image: style_img[None]})

def gan_style_loss(gan_output_image):
    # preprocess the gan image per the constants in cs231n/image_utils
    processed_gan_img = tf_preprocess_image(gan_output_image)
    gan_img_feats = model.extract_features(processed_gan_img)

    loss = tf.constant(0, tf.float32)
    for i in range(len(style_layers)):