Exemplo n.º 1
0
def Scheduling():
    """Return an instance of the Zebra Puzzle."""
    Faculty = 'Adams Schuurman VanderLinden Bailey'.split()
    Times = 'mwf900 mwf1030 tth900 tth1030'.split()
    Classrooms = 'nh253 sb382'.split()
    Courses = 'cs104 cs108 cs112 cs212 cs214 cs336 cs344'.split()
    variables = Courses
    domains = {}
    combo = list(itertools.product(Times, Faculty, Classrooms))
    for var in variables:
        domains[var] = combo

    # domains['Adams1'] = [1, 5]

    # neighbor parsing -- not implemented
    neighbors = parse_neighbors("""cs104: cs108; cs344: cs336""", variables)
    for type in [Courses, Faculty, Times, Classrooms]:
        for A in type:
            for B in type:
                if A != B:
                    if B not in neighbors[A]:
                        neighbors[A].append(B)
                    if A not in neighbors[B]:
                        neighbors[B].append(A)

    def constraint(A, a, B, b, recurse=0):
        # a room can only have one class at each time
        same_timespace = (a[0] == b[0] and a[2] == b[2])
        # faculty member can only teach one thing at a time
        same_profslot = (a[0] == b[0] and a[1] == b[1])
        if recurse == 0:
            return constraint(B, b, A, a, 1)
        return not (same_timespace or same_profslot)

    return CSP(variables, domains, neighbors, constraint)
Exemplo n.º 2
0
def MapColoringCSP(colors, neighbors):
    """Make a CSP for the problem of coloring a map with different colors
    for any two adjacent regions. Arguments are a list of colors, and a
    dict of {region: [neighbor,...]} entries. This dict may also be
    specified as a string of the form defined by parse_neighbors."""
    if isinstance(neighbors, str):
        neighbors = AIMAcsp.parse_neighbors(neighbors)
    return TUMCSP(list(neighbors.keys()), AIMAcsp.UniversalDict(colors),
                  neighbors, AIMAcsp.different_values_constraint)
Exemplo n.º 3
0
    def get_neighbors(self):
        self.neighbors = parse_neighbors("junk: filler")
        for type in [self.variables, self.possible_setups]:
            for A in type:
                for B in type:
                    if A != B:
                        if B not in self.neighbors[A]:
                            self.neighbors[A].append(B)
                        if A not in self.neighbors[B]:
                            self.neighbors[B].append(A)

        return self.neighbors
Exemplo n.º 4
0
def Scheduling():

    Courses = ['cs108', 'cs112', 'cs214', 'cs344', 'cs212']
    Faculty = ['Schuurman', 'Adams', 'Vanderlinden', 'Plantinga']
    Timeslot = ['MWF9', 'MWF1030', 'TTH9', 'TTH1030']
    Rooms = ['NH253', 'SB382']
    Assignement = {
        'cs108': 'Schuurman',
        'cs112': 'Adams',
        'cs214': 'Adams',
        'cs344': 'Vanderlinden',
        'cs212': 'Plantinga'
    }
    # setting Courses as variable
    variable = Courses

    # domains lists all possible combination of course, faculty, time, and room
    domains = {}
    for course in Courses:
        # making the course as the key to the domain dictionary
        domains[course] = []
        for prof in Faculty:
            for time in Timeslot:
                for room in Rooms:
                    # appending professor, time slot, room number to the course
                    domains[course].append([prof, time, room])

    # creating neighbors with each class to be neighbor to all other classes
    neighbors = parse_neighbors(
        """ cs108:cs112; cs108:cs212; cs108:cs344; cs108:cs214; cs112:cs212; cs112:cs344;
                cs112:cs214; cs212:cs344; cs212:cs214; cs344:cs212""",
        variable)

    def scheduling_constraints(courseA, a, courseB, b):
        # check if the assigned professor to the course and the professor in domain value are the same
        if (a[0] != Assignement[courseA]) or (b[0] != Assignement[courseB]):
            return False
        # check if the faculty and time slot are the same for different classes, then return false
        if a[0] == b[0] and a[1] == b[1]:
            return False
        # check if the time slot and the room number are the same for different classes, then return false
        if a[1] == b[1] and a[2] == b[2]:
            return False
        return True

    return CSP(variable, domains, neighbors, scheduling_constraints)
Exemplo n.º 5
0
def scheduler():

    classes = "CS232 CS108 CS212 CS112 CS336 CS344".split()
    profs = "Adams VanderLinden Plantinga Schuurman Norman Nelsen".split()
    times = "mwf0800 mwf0900 mwf1000 th1230".split()
    rooms = "nh253 sb382".split()

    variables = classes

    all_domains = []
    for room in rooms:
        for time in times:
            for prof in profs:
                all_domains.append(room + " " + time + " " + prof)

    domains = {}
    for var in variables:
        domains[var] = all_domains

    neighbors = parse_neighbors("""CS344: nh253 mwf0800""", variables)
    for type in [variables]:
        for A in type:
            for B in type:
                if A != B:
                    if B not in neighbors[A]:
                        neighbors[A].append(B)
                    if A not in neighbors[B]:
                        neighbors[B].append(A)

    def scheduler_constraint(A, a, B, b, recurse=0):

        conflict = (a == b)

        if (a.split()[0] == b.split()[0]) and (a.split()[2] == b.split()[2]):
            return conflict

        if (a.split()[1] == b.split()[1]) and (a.split()[2] == b.split()[2]):
            return conflict

        if recurse == 0:
            return scheduler_constraint(B, b, A, a, 1)

        return True

    return CSP(variables, domains, neighbors, scheduler_constraint)
Exemplo n.º 6
0
def scheduling(courses, faculties, times, rooms, assigned_faculty):
    domains = {}
    # to append all possible courses' cases to domains
    for course in courses:
        domains[course] = list()
        for faculty in faculties:
            for time in times:
                for room in rooms:
                    domains[course].append([faculty, time, room])

    # Pairing two courses each.
    neighbors = parse_neighbors(
        """cs108: cs112;
                cs112: cs212; cs212: cs214; cs214: cs384;
                cs384: cs232; cs232: cs344; cs344: cs108""", courses)
    for type in [courses]:
        for A in type:
            for B in type:
                if A != B:
                    if B not in neighbors[A]:
                        neighbors[A].append(B)
                    if A not in neighbors[B]:
                        neighbors[B].append(A)

    def scheduling_constraint(A, a, B, b, recurse=0):
        # each course should be offered exactly once by the assigned faculty member.
        if assigned_faculty[A] != a[0] and assigned_faculty[B] != b[0]:
            return False
        # a faculty member can only teach one thing at a time.
        if a[0] == b[0] and a[1] == b[1]:
            return False
        # a room can only have one class at each time.
        if a[1] == b[1] and a[2] == b[2]:
            return False
        return True

    return CSP(courses, domains, neighbors, scheduling_constraint)
Exemplo n.º 7
0
import csp


def constraint(A, a, B, b):
    if (A == 't1' and B == 't3'):
        return (a > b)
    elif (B == 't1' and A == 't3'):
        return (b > a)
    elif (A == 't3' and B == 't4'):
        return (b > a)
    elif (B == 't3' and A == 't4'):
        return (a > b)
    elif (A == 't3' and B == 't5'):
        return (a > b)
    elif (B == 't3' and A == 't5'):
        return (b > a)
    elif (A == 't1' and B == 't2') or (A == 't2' and B == 't1'):
        return (abs(a - b) > 60)
    elif (A == 't2' and B == 't4') or (A == 't4' and B == 't2'):
        return (abs(a - b) > 60)
    else:
        print(A, a, B, b)


variables = ['t1', 't2', 't3', 't4', 't5']
domains = {var: [540, 600, 660] for var in variables}
domains['t4'] = [540, 660]
neighs = """t1: t2 t3;t2: t4;t4: t3;t3: t5"""
neighs = csp.parse_neighbors(neighs)
timecsp = csp.CSP(variables, domains, neighs, constraint)
Exemplo n.º 8
0
times = '800MWF, 900MWF, 1030MWF, 1130MWF, 830TT, 1030TT,'.split()
rooms = 'NH253 SB382'.split()
domainsList = []
# Create every permutation of professor, time, and room
for p in profs:
    for t in times:
        for r in rooms:
            key = p + t + r
            domainsList.append( key )

variables = ['cs108', 'cs112', 'cs104', 'cs212', 'cs214', 'cs262', 'cs232']
domains = {}
# Assign each class to all the domain permutations
for var in variables:
    domains[var] = domainsList
neighbors = parse_neighbors("""cs108: DS,800MWF,NH253""", variables)
for type in [domainsList, variables]:
    for A in type:
        for B in type:
            if A != B:
                if B not in neighbors[A]:
                    neighbors[A].append(B)
                if A not in neighbors[B]:
                    neighbors[B].append(A)

problem = CSP(variables, domains, neighbors, schedule_constraint)

result = min_conflicts(problem, max_steps=1000)

print("Min conflicts:")
printResult( result)
Exemplo n.º 9
0
def Scheduler():
    """ Returns an instance of the CSP class. """
    courses = "cs108 cs112 cs214 stat343 cs336 cs300".split()
    profs = "norman adams schuurman pruim vanderlinden".split()
    slots = "mwf900 mwf1130 tth1030 tth130".split()
    rooms = "sb354 nh064".split()
        
    variables = courses
    assignments = {}
    assignments['cs108'] = "norman"
    assignments['cs112'] = "adams"
    assignments['cs214'] = "adams"
    assignments['stat343'] = "pruim"
    assignments['cs336'] = "vanderlinden"
    assignments['cs300'] = "schuurman"
    neighbors = parse_neighbors("""
    cs108: norman; cs112: adams; 
    cs214: adams; stat343: pruim; 
    cs336: vanderlinden; cs300: schuurman
    """, variables)
    domains = {}
    for course in courses:
        domains[course] = []
    for course in courses:
        for prof in profs:
            for room in rooms:
                for slot in slots:
                    domains[course].append(prof + " " + room + " " + slot)
    
    for type in [courses]:
        for A in type:
            for B in type:
                if A != B:
                    if B not in neighbors[A]:
                        neighbors[A].append(B)
                    if A not in neighbors[B]:
                        neighbors[B].append(A)

    def scheduler_constraints(A, a, B, b, recurse=0):
        ADomain = a.split()
        BDomain = b.split()
        A_Prof = ADomain[0]
        B_Prof = BDomain[0]
        A_Room = ADomain[1]
        B_Room = BDomain[1]
        A_Slot = ADomain[2]
        B_Slot = BDomain[2]
        A_Course = A
        B_Course = B
        
        if(A_Prof == B_Prof and A_Slot == B_Slot):
            return False
        if(A_Room == B_Room and A_Slot == B_Slot):
            return False

        if('norman' in a and A == 'cs108'):
            return True
        if('adams' in a and A == 'cs112'):
            return True
        if('adams' in a and A == 'cs214'):
            return True
        if('pruim' in a and A == 'stat343'):
            return True
        if('vanderlinden' in a and A == 'cs336'):
            return True
        if('schuurman' in a and A == 'cs300'):
            return True
        if(A in courses and B in courses):
            return False
        if(recurse == 0):
            return scheduler_constraints(B, b, A, a, 1)
        return True
    
    return CSP(variables, domains, neighbors, scheduler_constraints)
Exemplo n.º 10
0
def courses_scheduling():
    # Defines the variables and values.
    courses = 'cs108 cs112 cs212 cs214 cs232 cs262 cs344'.split()
    faculty = 'adams vanderlinden plantinga wieringa norman'.split()
    time_slots = 'mwf8:00-8:50 mwf9:00-9:50 mwf10:30-11:20 tth11:30-12:20 tth12:30-1:20'.split(
    )
    classrooms = 'nh253 sb382'.split()

    if debug:
        # Debug statements.
        print('\ncourses list:' + str(courses))
        print('faculty list:' + str(faculty))
        print('time_slots list:' + str(time_slots))
        print('classrooms list:' + str(classrooms))

    variables = courses
    values = faculty + time_slots + classrooms

    if debug:
        # Debug statements.
        print('\nMy variables: ' + str(variables))
        print('My values: ' + str(values))

    # Combine values into triplets for use as part of domain.
    value_triplets = []

    for faculty in faculty:
        for timeslots in time_slots:
            for classroom in classrooms:
                triplet = faculty + ' ' + timeslots + ' ' + classroom
                value_triplets.append(triplet)

    if debug:
        # Debug statement.
        print("\nContents of value_triplets: " + str(value_triplets) + "\n")

    # Defines the domain.
    domain = {}
    for var in variables:
        domain[var] = value_triplets

    if debug:
        # Debug statements.
        for key, value in domain.items():
            print("My domain key: " + key)
            print("My domain values: " + str(value))

    # Define neighbors of each variable.
    neighbors = csp.parse_neighbors(
        """cs108: cs112 cs212 cs214 cs232 cs262 cs344;
                cs112: cs108 cs212 cs214 cs232 cs262 cs344; 
                cs212: cs108 cs112 cs214 cs232 cs262 cs344; 
                cs214: cs108 cs112 cs212 cs232 cs262 cs344;
                cs232: cs108 cs112 cs212 cs214 cs262 cs344; 
                cs262: cs108 cs112 cs212 cs214 cs232 cs344; 
                cs344: cs108 cs112 cs212 cs214 cs232 cs262""")

    if debug:
        # Debug statements.
        print("\n\n")
        for key, value in neighbors.items():
            print("Neighbors Key:" + key)
            print("Neighbors Values: " + str(value))
    """
        The constraints are that:
            each course should be offered exactly once by the assigned faculty member.
            a faculty member can only teach one thing at a time.
            a room can only have one class at each time.
    """

    # Define the constraints on the variables.
    # FIXME - WTB more documentation for AIMA code.
    def scheduling_constraint(A, a, B, b):

        if debug:
            # Debug statement.
            print("\nvalue of A: " + A)
            print("value of B: " + B)
            print("value of a: " + a)
            print("value of b: " + b)

        # Split "a" and "b" from triplets into singlets to test for same'ness.
        a_split = str(a).split()
        b_split = str(b).split()

        if debug:
            # Debug statement.
            print("\na split contents: " + str(a_split))
            print("b split contents: " + str(b_split))

        # Important note: (faculty, timeslot, classroom) is the order of the split triplet!!!
        if a_split[0] == b_split[0] and a_split[1] == b_split[1]:
            return False
        if a_split[1] == b_split[1] and a_split[2] == b_split[2]:
            return False

        # If no constraint violations, return true.
        return True
        # raise Exception('error')

    return csp.CSP(variables, domain, neighbors, scheduling_constraint)
Exemplo n.º 11
0
def Schedule():
    Profs = 'dschuurman adams vnorman kvlinden'.split()
    Classes = 'cs108 cs112 cs212 cs214 cs300 cs344'.split()
    Times = 'mwf800 mwf900 mwf1030 mwf1130'.split()
    Rooms = 'sb354 sb372'.split()
    variables = Classes
    domains = {}
    for var in variables:
        domains[var] = []
        for Prof in Profs:
            for Time in Times:
                for Room in Rooms:
                    domains[var].append((Prof, Time, Room))
    neighbors = parse_neighbors(
        'cs108: ; cs112: ; cs212: ; cs214: ; cs300: ; cs344: ', variables)
    for type in [Classes]:
        for A in type:
            for B in type:
                if A != B:
                    if B not in neighbors[A]:
                        neighbors[A].append(B)
                    if A not in neighbors[B]:
                        neighbors[B].append(A)

    def schedule_constraints(A, a, B, b, recurse=0):
        same = (a == b)
        if A == B:
            return same
        if A != B:
            # if same professor
            if a[0] == b[0]:
                # if meeting at same time
                if a[1] == b[1]:
                    return False
                # No professor can teach consecutive classes
                elif a[1] == "mwf800" and b[1] == "mwf900":
                    return False
                elif b[1] == "mwf800" and a[1] == "mwf900":
                    return False
                elif a[1] == "mwf1030" and b[1] == "mwf900":
                    return False
                elif b[1] == "mwf1030" and a[1] == "mwf900":
                    return False
                elif a[1] == "mwf1030" and b[1] == "mwf1130":
                    return False
                elif b[1] == "mwf1030" and a[1] == "mwf1130":
                    return False
                else:
                    return True
            # if same time
            if a[1] == b[1]:
                # if classes have same professor or room
                if a[0] == b[0] or a[2] == b[2]:
                    return False
                else:
                    return True
            if a[2] == b[2]:
                if a[1] == b[1]:
                    return False
                else:
                    return True
            else:
                return True

        raise Exception('error')

    return CSP(variables, domains, neighbors, schedule_constraints)
Exemplo n.º 12
0
times = ['mwf900', 'mwf1030', 'mwf1130', 'mwf1230', 'mwf130']
rooms = ['nh253', 'sb382']
assignments = {'cs108': 'dschuurman', 'cs112': 'adams', 'cs212':'hplantin', 'cs214':'adams', 'cs232':'pmb4', 'cs262':'vlinden', 'cs300':'vlinden'}
num_courses = len(courses)

# neighbors: list all pairs of courses in the format needed for parse_neighbors
# does not include pairing courses with themselves or pairs that are the same in the other order
neighbors_string = ""
for i in range(num_courses):
    for j in range(num_courses-i-1):
        course1 = courses[i]
        course2 = courses[num_courses-j-1]
        neighbors_string += course1 + ":" + course2 + ";"

neighbors_string = neighbors_string[:-1] # get rid of the last semicolon
neighbors = parse_neighbors(neighbors_string, variables=courses)

# list all teaching combinations (of faculty, time, and room) that could be assigned to a course
domains = {}
for course in courses:
    domains[course] = []
    for prof in faculty:
        for time in times:
            for room in rooms:
                domains[course].append( [prof, time, room] )


# return whether the pair of courses do not conflict
def scheduling_constraints(courseA, variableA, courseB, variableB):
    """
    if the courses have the same room, same time, that fails the requirements
Exemplo n.º 13
0
# all the domain possibilities
domain_possibilities = []
for room in rooms:
    for time_slot in time_slots:
        for prof in professors:
            domain_possibilities.append(prof + " " + room + " " + time_slot)

# variables : courses
# domains : everything else
variables = classes
domains = {}
for var in variables:
    domains[var] = domain_possibilities

# neighbors : everybody is a neighbor
neighbors = parse_neighbors("""CS-344: NH158 8MWF""", variables)
for type in [classes, domain_possibilities]:
    for A in type:
        for B in type:
            if A != B:
                if B not in neighbors[A]:
                    neighbors[A].append(B)
                if A not in neighbors[B]:
                    neighbors[B].append(A)


# constraint function
# ensuring that a room is acceptable
# and that no schedule conflicts occur 
# (i.e. kvlinden can't be in two rooms at once)
def scheduler_constraint(A, a, B, b, recurse=0):
Exemplo n.º 14
0
def schedule():
    """CSP set-up for a class scheduling problem."""

    classes = 'cs108 cs112 cs214 cs374 cs344 cs212'.split()
    faculty = 'Schuurman Adams Vanderlinden Plantinga'.split()
    times = 'mwf9 mwf10 mwf11 mwf12'.split()
    rooms = 'nh253 sb382'.split()

    # create every [professor, time, room] combo
    combo = [0] * 32
    i = 0
    for x in range(len(faculty)):
        for y in range(len(times)):
            for z in range(len(rooms)):
                combo[i] = [faculty[x], times[y], rooms[z]]
                i += 1

    # Each class gets every single combination
    domains = {}
    for course in classes:
        domains[course] = combo

    # Everyone is a neighbor with everyone but themselves
    neighbors = parse_neighbors("""
            cs108: cs112 cs214 cs374 cs344 cs212;
            cs112: cs214 cs374 cs344 cs212;
            cs214: cs374 cs344 cs212;
            cs374: cs344 cs212;
            cs344: cs212;
            cs212: """)

    def schedule_constraint(A, a, B, b):
        """Codes the constraints the problem must follow"""
        # There can only be one instance of a class
        if A == B:
            return False

        # Certain professors only teach certain classes
        if A == 'cs108' and a[0] != 'Vanderlinden':
            return False
        if B == 'cs108' and b[0] != 'Vanderlinden':
            return False
        if A == 'cs344' and a[0] != 'Vanderlinden':
            return False
        if B == 'cs344' and b[0] != 'Vanderlinden':
            return False
        if A == 'cs374' and a[0] != 'Adams':
            return False
        if B == 'cs374' and b[0] != 'Adams':
            return False
        if A == 'cs112' and a[0] != 'Adams':
            return False
        if B == 'cs112' and b[0] != 'Adams':
            return False
        if A == 'cs212' and a[0] != 'Plantinga':
            return False
        if B == 'cs212' and b[0] != 'Plantinga':
            return False
        if A == 'cs214' and a[0] != 'Schuurman':
            return False
        if B == 'cs214' and b[0] != 'Schuurman':
            return False

        # a professor cannot teach two classes at the same time
        if a[0] == b[0] and a[1] == b[1]:
            return False
        # Two classes cannot be in the same room at the same time
        if a[1] == b[1] and a[2] == b[2]:
            return False

        return True

    return CSP(classes, domains, neighbors, schedule_constraint)