Exemplo n.º 1
0
def cdn_latency(ag_id1):
    neighbors1 = csr.Neighbors(ag_id1)
    sumlatency = 0
    for n_id1 in neighbors1:
        sumlatency += ne_latency(ag_id1, n_id1)

    # return 5*int(sumlatency/(len(neighbors1)))
    return 5 * float(sumlatency / (len(neighbors1)))
Exemplo n.º 2
0
    def mincost(self, agent, world, f_id, action):
        # 得到agent的所有邻居 ndarray
        neighbors = csr.Neighbors(agent.ag_id)
        # 提供最小开销的近邻/cdn
        # 几个近邻都一样,选择id最小的近邻
        min_n = -1
        # Cost = param.MAX_INT
        Cost = param.MAX_FLOAT
        isnehit = False
        isreplace = 0  # f_id是否需要替换
        for n_id in neighbors:
            n_id_lochit = self.neighbors_id_loc(n_id, world)
            cost = 0
            for ii in n_id_lochit:
                if ii == f_id:
                    isnehit = True
                    cost = float(param.alpha *
                                 param.ne_latency(agent.ag_id, n_id) +
                                 param.beta * param.traffic_cost_neighbor)
                    if Cost > cost:
                        Cost = cost
                        min_n = int(n_id)
                        break

        d_f_e_t = world.requests.Time_t_Requests_of_Agent_i(
            agent.ag_id, world.t - 1)[f_id]
        alpha = param.alpha
        beta = param.beta
        # 近邻命中
        if isnehit == True:
            l_e_j_t = param.ne_latency(agent.ag_id, min_n)
            p_e_j_t = param.beta * param.traffic_cost_neighbor
        else:  # cdn命中
            l_e_j_t = param.cdn_latency(agent.ag_id)
            p_e_j_t = param.beta * param.traffic_cost_cdn

        # 是否需要加入替换开销
        for ff_id in action:
            if ff_id == f_id:
                isreplace = 1
                break

        # cost1 = int(alpha*d_f_e_t*l_e_j_t + beta*d_f_e_t*p_e_j_t + beta*isreplace*p_e_j_t)
        cost1 = float(alpha * d_f_e_t * l_e_j_t + beta * d_f_e_t * p_e_j_t +
                      beta * isreplace * p_e_j_t)

        return 0 - cost1
Exemplo n.º 3
0
    def observation(self, agent, world):
        # 近邻agent的id从小到大排列
        re = []
        if world.t >= 0 and world.t <= 167:
            neighbors = csr.Neighbors(agent.ag_id)
            agent_cache_state = agent.state.cache_state
            agent_request = world.requests.Time_t_Requests_of_Agent_i(
                agent.ag_id, world.t)
            re.append(agent_cache_state)
            re.append(agent_request)
            for n_id in neighbors:  # 近邻id从小到大
                re.append(world.agents[n_id].state.cache_state)
                re.append(
                    world.requests.Time_t_Requests_of_Agent_i(n_id, world.t))

        re = np.asarray(re)
        return re
Exemplo n.º 4
0
    def observation(self,agent,world):
        # 近邻agent的id从小到大排列
        re = []
        if world.t >=0 and world.t <=167: 
            neighbors = csr.Neighbors(agent.ag_id)
            agent_cache_state = agent.state.cache_state
            agent_request = world.requests.Time_t_Requests_of_Agent_i(agent.ag_id,world.t)
            re.append(agent_cache_state)
            re.append(agent_request)
            for n_id in neighbors: # 近邻id从小到大
                re.append(world.agents[n_id].state.cache_state)
                re.append(world.requests.Time_t_Requests_of_Agent_i(n_id,world.t))

            # if len(re)<18:
                # for j in range(18-len(re)):
                    # re.append(list(np.zeros(100,dtype=np.int32)))

        re = np.asarray(re)
        return re
Exemplo n.º 5
0
    def cdn_hit(self, agent, world, f_id):
        neighbors = csr.Neighbors(agent.ag_id)
        min_n = -1
        Cost = param.MAX_FLOAT
        isnehit = False
        for n_id in neighbors:
            n_id_lochit = self.neighbors_id_loc(n_id, world)
            cost = 0
            for ii in n_id_lochit:
                if ii == f_id:
                    isnehit = True
                    cost = float(param.alpha *
                                 param.ne_latency(agent.ag_id, n_id) +
                                 param.beta * param.traffic_cost_neighbor)
                    if Cost > cost:
                        Cost = cost
                        min_n = int(n_id)
                        break

        # 近邻命中
        if isnehit == True:
            return False
        else:
            return True