def read_csv(file, heading=True): if heading: with open(file, 'r') as csv: lines = tuple(tuple(line.strip().split(',')) for line in csv.readlines()[1:]) return lines else: with open(file, 'r') as csv: lines = tuple(tuple(line.strip().split(',')) for line in csv.readlines()) return lines
def fileScore(score): ''' Add results to the csv score file ''' csv = open("score.csv","a") numberPlayer = [] scoreMove = [] descriptionMove = [] for line in csv.readlines(): line = line.rstrip("\n") line = line.split(",") numberPlayer.append(line[0]) scoreMove.append(line[1:]) descriptionMove.append(line[2:]) csv.close() def main(): #initializes variables (reads file) players = {} score = {} if __name__=="__main__": main()
def write(msg): """ Writes the message to UART_2 Doesn't return anything """ # Creates file if it doesn't exist os.makedirs(os.path.dirname(file), exist_ok=True) if not os.path.exists(file): with open(file, 'w'): pass lines = [] # Grab the current UART data with open(file, "r") as csv: fcntl.flock(csv.fileno(), fcntl.LOCK_EX) lines = csv.readlines() # If the file hasn't been initialzed yet, set the two entries to empty length = len(lines) if length < 2: for i in range(length,2): lines.append('\n') # Write back the UART data, modifying the specified one with open(file, "w") as csv: for (i, line) in enumerate(lines): if i == 1: csv.write(msg) csv.write('\n') else: csv.write(line) fcntl.flock(csv.fileno(), fcntl.LOCK_UN)
def process_tweets(csv_file, test_file=True): """Returns a list of tuples of type (tweet_id, feature_vector) or (tweet_id, sentiment, feature_vector) Args: csv_file (str): Name of processed csv file generated by preprocess.py test_file (bool, optional): If processing test file Returns: list: Of tuples """ tweets = [] print('Generating feature vectors') with open(csv_file, 'r') as csv: lines = csv.readlines() total = len(lines) for i, line in enumerate(lines): if test_file: tweet_id, tweet = line.split(',') else: tweet_id, sentiment, tweet = line.split(',') feature_vector = get_feature_vector(tweet) if test_file: tweets.append((tweet_id, feature_vector)) else: tweets.append((tweet_id, int(sentiment), feature_vector)) utils.write_status(i + 1, total) print('\n') return tweets
def writeGPIO(ignStates): # Creates file if it doesn't exist os.makedirs(os.path.dirname(file), exist_ok=True) if not os.path.exists(file): with open(file, 'w'): pass lines = [] # Grab the current GPIO data with open(file, "r") as csv: fcntl.flock(csv.fileno(), fcntl.LOCK_EX) lines = csv.readlines() #If the file hasn't been initialzed yet, set the two entries to empty length = len(lines) if length < 4: for i in range(length, 2): lines.append('\n') with open(file, "w") as csv: for (i, line) in enumerate(lines): if i == 0: csv.write(str(ignStates >> 8)) csv.write('\n') else: csv.write(line) fcntl.flock(csv.fileno(), fcntl.LOCK_UN)
def split_train_test(original_path: str, train_path: str, test_path: str, num_instances: int, enc: str = 'utf-8'): """ Manual splitting of training and test data. This method is deprecated due to the introduction of scikit-learn's methods such as train test split and stratified split validation Keyword arguments: original_path -- path to full dataset to be split train_path -- the path to the new training data to be formed test_path -- the path to the new testing data to be formed num_instances -- total number of data instances in the dataset enc -- the encoding to be used for reading and writing the files """ train_data = [] test_data = [] with open(original_path, 'r', encoding='utf-8') as csv: for idx, line in enumerate(csv.readlines()): if "[deleted]" in line: continue if idx <= (round(num_instances * 0.8)): train_data.append(line) else: test_data.append(line) with open(train_path, 'a', encoding='utf-8') as train: for line in train_data: train.write(line) with open(test_path, 'a', encoding='utf-8') as test: for line in test_data: test.write(line)
def body_from_csv(self, env, csvfile): ffpath = os.path.dirname(self.srcpath) print(self.srcpath, os.getcwd()) filename = os.path.join(env.srcdir, ffpath, csvfile) print("\n\nPATH=", self.srcpath) with open(filename, "r") as csv: content = csv.readlines() content = [line[:-1] for line in content] return self.body_to_csv(content)
def delete_blank_deadlines(): csv = open('data.csv', encoding='utf-8') string = csv.readlines() csv.close() file = open("data.csv", "w", encoding="utf-8") for i in string: if not i.isspace(): str = i.replace('\n', '') print(str) file.write(str + "\n") file.close()
def readGPIO(): os.makedirs(os.path.dirname(file), exist_ok=True) if not os.path.exists(file): with open(file, 'w'): pass lines = [] # Grab the current GPIO data with open(file, "r") as csv: fcntl.flock(csv.fileno(), fcntl.LOCK_EX) lines = csv.readlines() return int(lines[0])
def get_status(file_bool): if file_bool == True: csv_file = '/usr/local/projects/wifi_connectivity_bot/Record_Keeping/up_down_eth.csv' else: csv_file = '/usr/local/projects/wifi_connectivity_bot/Record_Keeping/up_down_wifi.csv' with closing(open(csv_file, "r")) as csv: list_file = csv.readlines() # grabs final line from input file final_line = list_file[len(list_file) - 1] csv_row = final_line.split(",") # grabs the first field from file return csv_row[0]
def display_scorelist(): with open('highscore.csv') as csv: from_file = csv.readlines() splitted = [line.split(' | ') for line in from_file] ranking = [(line[0], line[1], (line[2]).strip()) for line in splitted] sorted_ranking = sorted(ranking, key=get_points) for item in sorted_ranking: print(item) # ranking = get_score_list(points) # add_result_to_scorelist(ranking) # display_scorelist()
def read_file(filename): """ Read in data from file. Input: File name Output: List of rows as lists """ data_from_file = [] with open(filename) as csv: reader = csv.readlines() for row in reader: data_from_file.append(row.strip().split(";")) return data_from_file
def get_data_list(self,file): ''' Given a csv file, this will return a 2d list, data_list, where data_list has an index for each header in row one. Each of these headers in turn is a list, which contains all the data in their column. ''' list = [] with open(file, 'r') as csv: list_of_lines = csv.readlines() for i in range(len(list_of_lines)): list.append(list_of_lines[i].split(',')) return list
def load_buildings_from_file(buildingCsv): firstLine = True with open(buildingCsv, 'r') as csv: for row in csv.readlines(): if firstLine == True: firstLine = False else: tokens = row.strip().split(",") yield { "project_id" : tokens[0], "task_id" : tokens[1], "way_id" : tokens[2], "bounding_box" : tokens[3:] }
def getOffsetsAndSensitivity(self): # i=1 fileName = self.O3boardNo + '.csv' csv = open(fileName, 'r') hdr = csv.readline() hdr = hdr.strip().split(',') self.gasOffsetsAndSensitivity = defaultdict(list) lines = csv.readlines() for line in lines: row = line.strip().split(',') for i in range(1, len(hdr)): key = str(hdr[i]) value = str(row[i]) self.gasOffsetsAndSensitivity[key].append(value) csv.close() return self.gasOffsetsAndSensitivity
def read_csv2(path): csv = open(path, 'r') data = [] keys = [] # collect keys from 1st line and init data for i in csv.readline().rstrip().split(','): keys.append(i) # fill data with values for i in csv.readlines(): obj = {} for key, val in zip(keys, i.rstrip().split(',')): if re.match(r'\d*\.?\d+', val): obj[key] = float(val) else: obj[key] = val data.append(obj) return data
def process_senti_data(csv_file_name, type): out_list = [] with open(csv_file_name, 'r') as csv: lines = csv.readlines() step = int(len(lines) / 6) if type == 'train': lines = lines[0:4 * step] elif type == 'test': lines = lines[4 * step + 1:5 * step] else: lines = lines[5 * step + 1:-1] for line in lines: line_split = line.strip().split(',') tweet = line_split[2] tweet = tweet.replace('USER_MENTION', '').replace('URL', '') if len(tweet) > 0: out_list.append(line_split[1] + '\t' + tweet) return out_list
def filePlayers(self,players): ''' Reads csv players file ''' csv = open("desktop/master/players.csv","r") numberPlayer = [] namePlayer = [] professionPlayer = [] for row in csv.readlines(): row = row.rstrip("\n") row = row.split(",") numberPlayer.append(row[0]) namePlayer.append(row[1]) professionPlayer.append(row[2]) for x in range(len(numberPlayer)): players[numberPlayer[x]] = namePlayer[x],professionPlayer[x] csv.close()
def process_tweets(csv_file, test_file=True): tweets = [] labels = [] print('Generating feature vectors') with open(csv_file, 'r') as csv: lines = csv.readlines() total = len(lines) for i, line in enumerate(lines): if test_file: tweet_id, tweet = line.split(',') else: tweet_id, sentiment, tweet = line.split(',') feature_vector = get_feature_vector(tweet) if test_file: tweets.append(feature_vector) else: tweets.append(feature_vector) labels.append(int(sentiment)) utils.write_status(i + 1, total) print('\n') return tweets, np.array(labels)
def write(id, msg): """Writes the msg and id to CAN1 Format: id, msg, msg_length Doesn't return anything """ # Creates file if it doesn't exist os.makedirs(os.path.dirname(file), exist_ok=True) if not os.path.exists(file): with open(file, "w"): pass lines = [] # Grab the current CAN data try: with open(file, "r") as csv: fcntl.flock(csv.fileno(), fcntl.LOCK_EX) lines = csv.readlines() except Exception: pass # If the file hasn't been initialzed yet, set the two entries to empty length = len(lines) if length < 2: for i in range(length, 2): lines.append("\n") # Write back the CAN data, modifying the specified one CANtext = "%s,%s,%d" % (id, msg, round((len(msg) - 2) / 2.0 + 0.1)) # CANtext = (id + ', ' + msg ', ' + (str)(len(msg))) with open(file, "w") as csv: for (i, line) in enumerate(lines): if i == 0: csv.write(CANtext) csv.write("\n") else: csv.write(line) fcntl.flock(csv.fileno(), fcntl.LOCK_UN)
def read_files(): csv = open("labels.csv") csv_read = csv.readlines() csv.close() results = open("results.csv") results_read = results.readlines() results.close() control_group = [] value_data = [] for lines in csv_read[1:]: lines = tuple(lines.rstrip().split(",")) control_group.append(lines[1]) for lines in results_read[1:]: lines = lines.rstrip() lines = tuple(lines.split(";")) value_data.append(lines) return value_data, control_group
def preprocess_csv(csv_file_name, processed_file_name, test_file=False): save_to_file = open(processed_file_name, 'w') with open(csv_file_name, 'r') as csv: lines = csv.readlines() total = len(lines) for i, line in enumerate(lines): tweet_id = line[:line.find(',')] if not test_file: line = line[1 + line.find(','):] positive = int(line[:line.find(',')]) line = line[1 + line.find(','):] tweet = line processed_tweet = preprocess_tweet(tweet) if not test_file: save_to_file.write('%s,%d,%s\n' % (tweet_id, positive, processed_tweet)) else: save_to_file.write('%s,%s\n' % (tweet_id, processed_tweet)) write_status(i + 1, total) save_to_file.close() print('\nSaved processed tweets to: %s' % processed_file_name) return processed_file_name
# data_path = 'spring-2020.csv' # with open(data_path, 'r') as f: # reader = csv.reader(f, delimiter=',') # headers = next(reader) # data = np.array(list(reader)).astype(str) # plt.plot(data[:, 0], data[:, 1]) # plt.bar # plt.axis('equal') # plt.xlabel("College") # plt.ylabel("Population") # plt.show() csv = open("spring-2020.csv", "r") file = csv.readlines() college = [] for line in file: items = line.split(",") college = items[0] print(line) ray = np.array(line) print(ray) csv.close()
import os import csv import matplotlib.pyplot as plt import matplotlib.dates as dates import datetime os.system("python GetTweets.py" ) #runs code that handles twitter API (saves to csv file) os.system("python ExtractStockPrices.py" ) #runs code that handles yahoo finance API (saves to csv file) with open('stock.csv', 'r') as csv: #need to open csv with read capabilities content = csv.readlines() content = [x.strip() for x in content] #strip and split the lines from the csv file content = [x.split(",") for x in content ] #each line is of the form <date>,<closing stock price> stockDay = [] #initialize lists stockPrice = [] for y in reversed( content ): #need to reverse the content because yahoo finance API returns is backwards stockDay.append(y[0]) #daylist gets first element stockPrice.append(y[1]) #pricelist gets second element with open( 'data.csv', 'r' ) as csv2: #similar to the getting of the info from the stock prices csv newcont = csv2.readlines() newcont = [n.strip() for n in newcont] newcont = [n.split(",") for n in newcont]
import csv #dfImport = pd.read_csv('imports.csv') csv = open('exports1.csv', 'r') products = ['All Products','Animal','Textiles and Clothing','Wood','Minerals','Food Products','Chemicals','Plastic or Rubber','Fuels','Mach and Elec'] years = ['1989','1990','1991','1992','1993','1994','1995','1996','1997','1998','1999','2000','2001','2002','2003','2004','2005','2006','2007','2008','2009','2010','2011','2012','2013','2014','2015'] #Reporter Name,Partner Name,Trade Flow,Product Group,Measure,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015 filename = 'relationaltrade.csv' lines = csv.readlines() def main(): f=open(filename, 'w') newline="Reporter Name,Partner Name,Product Group,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,Total\n" for line in lines: row=line.split(";") if (row[3] in products): if "," in row[0]: row[0] ="\""+row[0]+"\"" if "," in row[1]: row[1] ="\""+row[1]+"\"" newline=row[0]+","+row[1]+","+row[3] total=0 for i in range(5, len(row)): if (i == len(row)-1): row[i]=row[i][:-1] #remove \n from last element total=total+float(row[i]) newline=newline+","+row[i] newline=newline+","+str(total)+"\n" f.write(newline) main()
def read_the_bathroom_codes(): filename = "bathroom_codes.txt" with open(filename) as csv: bathroom_codes = csv.readlines(filename) return bathroom_codes
import csv class MyDatabase def filePlayers(players): ''' ask for name ''' name = raw_input("Enter your name or id:") ''' Reads csv players file ''' csv = open("players.csv","r") numberPlayer = [] namePlayer = [] professionPlayer = [] for line in csv.readlines(): line = line.rstrip("\n") line = line.split(",") numberPlayer.append(line[0]) namePlayer.append(line[1:]) professionPlayer.append(line[2:]) for x in range(len(numberPlayer)): players[numberPlayer[x]] = namePlayer[x] csv.close() def fileScore(score): ''' Add results to the csv score file ''' csv = open("score.csv","a")
import pandas as pd import sys values=[] col=5 df1 = pd.read_csv("awards.csv",delimiter=',') df2 = pd.read_csv("contracts.csv",delimiter=',') df = pd.merge(df1, df2, how='outer', on=['contractname']) df.to_csv("merged.csv", index=False) saved_column=df.contractname print(saved_column) with open('merged.csv', 'r') as csv: cols=[4] for line in csv.readlines(): content = list(line[i] for i in cols) print(content) elements = line.strip().split(',') try: if int(elements[col]) == Amount: values.append(int(elements[col])) break except ValueError: csum = sum(values) print("Sum of column %d: %f" % (col, csum)) def geolocator(): table_string = ""
def extract_rows_from(input_file, delimiter=",", map_format=int, encoding="utf-8", mode='r'): """Extract a table from a csv file. Return a generator of rows""" with open(input_file, mode=mode, encoding=encoding) as csv: for row in csv.readlines(): yield [el for el in map(map_format, row[:-1].split(delimiter))]