Exemplo n.º 1
0
 def test_index_take(self):
     a = Index("A", ["a", "b", "c", "d"])
     self.assertEqual(a.take([0, 2]).name, "A")  # keep name
     self.assertTrue(np.array_equal(a.take([0, 2]).values, ["a", "c"]))
     self.assertTrue(np.array_equal(a.take([2, 0]).values, ["c", "a"]))
     self.assertRaises(ValueError, a.take,
                       [0, 2, 0])  # duplicate values in Index
Exemplo n.º 2
0
    def test_stack(self):
        c = year_quarter_cube()
        d = year_quarter_cube()
        country_axis = Index("country", ["GB", "FR"])
        e = stack([c, d], country_axis)
        self.assertEqual(e.values.shape, (2, 3, 4))
        # the merged axis go first
        self.assertEqual(tuple(e.dims), ("country", "year", "quarter"))

        # axis with the same name already exists
        c = year_quarter_cube()
        d = year_quarter_cube()
        year_axis = Index("year", [2000, 2001])
        self.assertRaises(ValueError, stack, [c, d], year_axis)

        # different number of cubes and axis length
        c = year_quarter_cube()
        d = year_quarter_cube()
        country_axis = Index("country", ["GB", "FR", "DE"])
        self.assertRaises(ValueError, stack, [c, d], country_axis)

        # cubes do not have uniform shapes
        c = year_quarter_cube()
        d = year_quarter_weekday_cube()
        country_axis = Index("country", ["GB", "FR"])
        self.assertRaises(LookupError, stack, [c, d], country_axis)

        # the previous example if O, if automatic broadcasting is allowed
        e = stack([c, d], country_axis, broadcast=True)
        self.assertEqual(e.ndim, 4)
        # broadcast axes go last
        self.assertEqual(tuple(e.dims), ("country", "year", "quarter", "weekday"))
Exemplo n.º 3
0
def year_quarter_weekday_cube():
    """Creates 3D cube with axes "year", "quarter", "weekday" with shape (3, 4, 7)."""
    values = np.arange(3 * 4 * 7).reshape(3, 4, 7)
    ax1 = Index("year", [2014, 2015, 2016])
    ax2 = Index("quarter", ["Q1", "Q2", "Q3", "Q4"])
    ax3 = Index("weekday", ["mon", "tue", "wed", "thu", "fri", "sat", "sun"])
    return Cube([ax1, ax2, ax3],values)
Exemplo n.º 4
0
    def test_concatenate(self):
        values = np.arange(12).reshape(3, 4)
        ax1 = Index("year", [2014, 2015, 2016])
        ax2 = Index("month", ["jan", "feb", "mar", "apr"])
        c = Cube([ax1, ax2],values)

        values = np.arange(12).reshape(4, 3)
        ax3 = Index("year", [2014, 2015, 2016])
        ax4 = Index("month", ["may", "jun", "jul", "aug"])
        d = Cube([ax4, ax3],values)

        e = concatenate([c, d], "month")
        self.assertEqual(e.ndim, 2)
        self.assertEqual(e.shape, (8, 3))  # the joined axis is always the first
        self.assertTrue(is_axis(e.axis("month")))

        e = concatenate([c, d], "month", as_index=True)
        self.assertEqual(e.ndim, 2)
        self.assertEqual(e.shape, (8, 3))
        self.assertTrue(is_indexed(e.axis("month")))

        # duplicate index values
        self.assertRaises(ValueError, concatenate, [c, c], "month", as_index=True)

        # broadcasting of an axis
        countries = Axis("country", ["DE", "FR"])
        f = d.insert_axis(countries)
        g = concatenate([c, f], "month", broadcast=True)
        self.assertEqual(g.ndim, 3)
        self.assertEqual(g.shape, (8, 3, 2))

        # if automatic broadcasting is not allowed
        self.assertRaises(LookupError, concatenate, [c, f], "month", broadcast=False)
Exemplo n.º 5
0
    def test_operator_in(self):
        a = Index("A", [10, 20, 30])
        b = Index("B", ["ab", "bc", "cd", "de"])

        self.assertTrue(20 in a)
        self.assertFalse(40 in a)
        self.assertTrue("bc" in b)
        self.assertFalse("ef" in b)
Exemplo n.º 6
0
 def test_compress(self):
     a = Index("A", ["a", "b", "c", "d"])
     selector = [True, False, True, False]
     b = a.compress(selector)
     c = a[np.array(selector)]
     self.assertTrue(np.array_equal(b.values, c.values))
     self.assertEqual(a.name, b.name)  # keep name
     self.assertTrue(np.array_equal(b.values, a.values.compress(selector)))
Exemplo n.º 7
0
    def test_create_index(self):
        a = Index("A", [10, 20, 30])
        self.assertEqual(a.name, "A")
        self.assertEqual(len(a), 3)

        a = Index("Dim", ["a", "b", "c", "d"])
        self.assertEqual(a.name, "Dim")
        self.assertEqual(len(a), 4)

        # duplicate values
        self.assertRaises(ValueError, Index, "A", ["a", "b", "a"])
        self.assertRaises(ValueError, Index, "A", [0, 1, 1])

        # invalid Index name
        self.assertRaises(TypeError, Index, 1, [1, 2, 3])
Exemplo n.º 8
0
    def test_squeeze(self):
        """Removes axes which have only one element."""
        ax1 = Index("A", [1])  # has only one element, thus can be collapsed
        ax2 = Index("B", [1, 2, 3])

        c = Cube([ax1, ax2],[[1, 2, 3]] )
        self.assertEqual(c.ndim, 2)
        d = c.squeeze()
        self.assertEqual(d.ndim, 1)
        self.assertEqual(d.axis(0).name, "B")

        c = Cube([ax2, ax1],[[1], [2], [3]])
        self.assertEqual(c.ndim, 2)
        d = c.squeeze()
        self.assertEqual(d.ndim, 1)
        self.assertEqual(d.axis(0).name, "B")

        ax3 = Index("C", [1])  # has only one element, thus can be collapsed
        c = Cube([ax1, ax3],[[1]])
        self.assertEqual(c.ndim, 2)
        d = c.squeeze()  # will collapse both axes
        self.assertEqual(d.ndim, 0)
Exemplo n.º 9
0
    def test_indexof(self):
        a = Index("A", [10, 20, 30])
        b = Index("Dim", ["ab", "bc", "cd", "de"])

        # a single value
        self.assertEqual(a.indexof(10), 0)
        self.assertEqual(b.indexof("cd"), 2)
        self.assertEqual(b.indexof(["cd"]), 2)

        # multiple values
        self.assertTrue(np.array_equal(a.indexof([10, 30]), [0, 2]))
        self.assertTrue(np.array_equal(b.indexof(["de", "cd"]), [3, 2]))

        # non-existent value raises KeyError (similar to dictionary lookup)
        self.assertRaises(KeyError, a.indexof, 0)
        self.assertRaises(KeyError, b.indexof, "ef")
        self.assertRaises(KeyError, b.indexof, None)
        self.assertRaises(KeyError, a.indexof, [0, 1])
        self.assertRaises(KeyError, b.indexof, ["de", "ef"])
Exemplo n.º 10
0
    def test_create_cube(self):
    
        ax1 = Index("A", [10, 20, 30])
        ax2 = Index("B", ["a", "b", "c", "d"])
        ax3 = Index("C", [1.1, 1.2])

        # test Cube.zeros()
        a = Cube.zeros([ax1, ax3])
        self.assertTrue(np.array_equal(a.values, [[0, 0], [0, 0], [0, 0]]))

        # test Cube.ones()
        a = Cube.ones([ax1, ax3])
        self.assertTrue(np.array_equal(a.values, [[1, 1], [1, 1], [1, 1]]))

        # test Cube.full()
        a = Cube.full([ax1, ax3], np.inf)
        self.assertTrue(np.array_equal(a.values, [[np.inf, np.inf], [np.inf, np.inf], [np.inf, np.inf]]))

        # test Cube.full with NaNs
        # note: be careful because NaN != NaN so np.array_equal does not work
        a = Cube.full([ax1, ax3], np.nan)
        np.testing.assert_equal(a.values, [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]])
        
        # create one-dimensional cube
        values = np.arange(3)
        try:
            Cube((ax1,),values)
            Cube(ax1,values)  # no need to pass axes as collection if there is only one axis
        except Exception:
            self.fail("raised exception unexpectedly")
        
        # two-dimensional cubes
        values = np.arange(12).reshape(3, 4)
        try:
            Cube((ax1, ax2),values)
            Cube([ax1, ax2],values)
        except Exception:
            self.fail("raised exception unexpectedly")
Exemplo n.º 11
0
    def test_filter(self):
        """Testing function Cube.filter()"""
        c = year_quarter_cube()

        d = c.filter("year", [2014, 2018])  # 2018 is ignored
        self.assertEqual(d.ndim, 2)
        self.assertTrue((d.values == c.values[0]).all())

        year_filter = Axis("year", range(2010, 2015))
        d = c.filter(year_filter)
        self.assertEqual(d.ndim, 2)
        self.assertTrue((d.values == c.values[0]).all())

        year_filter = Index("year", range(2010, 2015))
        d = c.filter(year_filter)
        self.assertEqual(d.ndim, 2)
        self.assertTrue((d.values == c.values[0]).all())

        country_filter = Axis("country", ["DE", "FR"])  # this axis is ignored

        # filter by two axis filters
        quarter_filter = Index("quarter", ["Q1", "Q3"])
        d = c.filter([quarter_filter, country_filter, year_filter])
        self.assertEqual(d.ndim, 2)
        self.assertTrue((d.values == c.values[[0, 0], [0, 2]]).all())

        # cube as a filter
        yq_cube_filter = Cube.ones([quarter_filter, year_filter, country_filter])
        d = c.filter(yq_cube_filter)
        self.assertEqual(d.ndim, 2)
        self.assertTrue((d.values == c.values[[0, 0], [0, 2]]).all())

        # a collection of cubes as a filter
        y_cube_filter = Cube.ones([year_filter, country_filter])
        q_cube_filter = Cube.ones([country_filter, quarter_filter])
        d = c.filter([y_cube_filter, q_cube_filter])
        self.assertEqual(d.ndim, 2)
        self.assertTrue((d.values == c.values[[0, 0], [0, 2]]).all())
Exemplo n.º 12
0
    def test_align_axis(self):
        c = year_quarter_cube()
        ax1 = Axis("year", [2015, 2015, 2014, 2014])
        ax2 = Index("quarter", ["Q1", "Q3"])
        
        d = c.align(ax1)
        d = d.align(ax2)

        # test identity of the new axis
        self.assertTrue(d.axis("year") is ax1)
        self.assertTrue(d.axis("quarter") is ax2)

        # test aligned values
        self.assertTrue(np.array_equal(d.values, [[4, 6], [4, 6], [0, 2], [0, 2]]))
Exemplo n.º 13
0
    def test_contains(self):
        a = Index("A", [10, 20, 30])
        b = Index("B", ["ab", "bc", "cd", "de"])

        # a single value (in this case, operator 'in' is preferred)
        self.assertTrue(a.contains(20))
        self.assertFalse(a.contains(40))
        self.assertTrue(b.contains("bc"))
        self.assertFalse(b.contains("ef"))

        # multiple values returns one-dimensional numpy array of logical values
        self.assertTrue(
            np.array_equal(a.contains([0, 10, 20, 40]),
                           [False, True, True, False]))
        self.assertTrue(np.array_equal(b.contains(["ab"]), [True]))
        self.assertTrue(
            np.array_equal(b.contains(["ab", "ef", "bc"]),
                           [True, False, True]))
        self.assertTrue(
            np.array_equal(b.contains(("ab", "ef", "bc")),
                           [True, False, True]))
Exemplo n.º 14
0
 def test_writeable(self):
     # once index has been created, its values cannot be changed in order not to break lookup function
     a = Index("A", [10, 20, 30])
     self.assertRaises(ValueError, a.values.__setitem__, 0, 40)
     self.assertRaises(ValueError, a.values.sort)
Exemplo n.º 15
0
def year_quarter_cube():
    """Creates a sample 2D cube with axes "year" and "quarter" with shape (3, 4)."""
    values = np.arange(12).reshape(3, 4)
    ax1 = Index("year", [2014, 2015, 2016])
    ax2 = Index("quarter", ["Q1", "Q2", "Q3", "Q4"])
    return Cube([ax1, ax2],values)
Exemplo n.º 16
0
    def test_operations(self):
        values = np.arange(12).reshape(3, 4)
        axc1 = Index("a", [10, 20, 30])
        axc2 = Index("b", ["a", "b", "c", "d"])
        c = Cube([axc1, axc2],values)

        axd1 = Index("a", [10, 20, 30])
        axd2 = Index("b", ["a", "b", "c", "d"])
        d = Cube([axd1, axd2],values)

        x = c * d
        self.assertTrue(np.array_equal(x.values, values * values))

        e = Cube([Index("a", [10, 20, 30])],[0, 1, 2])

        x2 = c * e
        self.assertTrue(np.array_equal(x2.values, values * np.array([[0], [1], [2]])))

        c3 = Cube([Index("b", ["a", "b", "c", "d"])],[0, 1, 2, 3])
        x3 = c * c3
        self.assertTrue(np.array_equal(x3.values, values * np.array([0, 1, 2, 3])))

        c3 = Cube([Index("b", ["b", "a", "c", "d"])],[0, 1, 2, 3])
        x3 = c * c3
        self.assertTrue(np.array_equal(x3.values, values * np.array([1, 0, 2, 3])))

        values_d = np.array([0, 1])
        d = Cube([Index("d", ["d1", "d2"])],values_d)
        x = c * d
        self.assertEqual(x.ndim, 3)
        self.assertEqual(x.axis(0).name, "a")
        self.assertEqual(x.axis(1).name, "b")
        self.assertEqual(x.axis(2).name, "d")

        self.assertTrue(np.array_equal(x.values, values.reshape(3, 4, 1) * values_d))

        # operations with scalar
        d = 10
        x = c * d
        self.assertTrue(np.array_equal(x.values, values * d))
        x = d * c
        self.assertTrue(np.array_equal(x.values, values * d))
        
        # operations with numpy.ndarray
        d = np.arange(4)
        x = c * d
        self.assertTrue(np.array_equal(x.values, values * d))
        x = d * c
        self.assertTrue(np.array_equal(x.values, values * d))
        
        d = np.arange(3).reshape(3, 1)
        x = c * d
        self.assertTrue(np.array_equal(x.values, values * d))
        x = d * c
        self.assertTrue(np.array_equal(x.values, values * d))
        
        # matching Index and Series
        values_d = np.array([0, 1])
        d = Cube(Axis("a", [10, 10]),values_d)
        x = c * d
        self.assertTrue(np.array_equal(x.values, values.take([0, 0], 0) * values_d[:, np.newaxis]))
        
        values_d = np.array([0, 1, 2, 3])
        d = Cube(Axis("b", ["d", "d", "c", "a"]),values_d)
        x = c * d
        self.assertTrue(np.array_equal(x.values, values.take([3, 3, 2, 0], 1) * values_d))

        # unary plus and minus
        c = year_quarter_cube()
        self.assertTrue(np.array_equal((+c).values, c.values))
        self.assertTrue(np.array_equal((-c).values, -c.values))

        c = year_quarter_cube() + 1  # +1 to prevent division by zero error
        import operator as op
        ops = [op.add, op.mul, op.floordiv, op.truediv, op.sub, op.pow, op.mod,  # arithmetics ops
               op.eq, op.ne, op.ge, op.le, op.gt, op.lt,  # comparison ops
               op.rshift, op.lshift]  # bitwise ops

        # operations with scalar
        d = 2
        for op in ops:
            self.assertTrue(np.array_equal(op(c, d).values, op(c.values, d)))
            self.assertTrue(np.array_equal(op(d, c).values, op(d, c.values)))

        # oprations with numpy array
        d = (np.arange(12).reshape(3, 4) / 6 + 1).astype(np.int)  # +1 to prevent division by zero error
        for op in ops:
            self.assertTrue(np.array_equal(op(c, d).values, op(c.values, d)))
            self.assertTrue(np.array_equal(op(d, c).values, op(d, c.values)))