Exemplo n.º 1
0
    def create_weights(self):
        self.log_network()
        if self.next_layer:
            self.w_next = gpu.array(
                create_uniform_rdm_weight(self.unitcount,
                                          self.next_layer.unitcount))
            self.b_next = gpu.zeros((1, self.next_layer.unitcount))
            self.m_next = gpu.zeros(
                (self.unitcount, self.next_layer.unitcount))
            self.w_grad_next = gpu.zeros(
                (self.unitcount, self.next_layer.unitcount))
            self.b_grad_next = gpu.zeros((1, self.next_layer.unitcount))
            self.w_next_sync = gpu.zeros(
                (self.unitcount, self.next_layer.unitcount))
            if self.next_layer.config['compression'] == '1bit':
                self.errors = gpu.zeros_like(self.w_grad_next)
                self.posMask = gpu.zeros_like(self.w_grad_next)
                self.negMask = gpu.zeros_like(self.w_grad_next)
                self.w_grad_with_errors = gpu.zeros_like(self.w_grad_next)
                self.posCount = gpu.zeros((self.w_grad_next.shape_tensor[2], ))
                self.negCount = gpu.zeros((self.w_grad_next.shape_tensor[2], ))
                self.posAvg = gpu.zeros((self.w_grad_next.shape_tensor[2], ))
                self.negAvg = gpu.zeros((self.w_grad_next.shape_tensor[2], ))
            if self.next_layer.config['compression'] == '8bit':
                self.max_value_buffer = gpu.empty_like(self.w_grad_next)

            if self.next_layer: self.next_layer.create_weights()
Exemplo n.º 2
0
 def handle_offsize(self, batch_size):
     if self.activation_offsize == None:
         split_axis = (2 if self.config['parallelism'] == 'data' else -1)
         self.activation_offsize = gpu.empty((batch_size, self.unitcount),
                                             split_axis)
         self.out_offsize = gpu.empty((batch_size, self.unitcount),
                                      split_axis)
         self.error_offsize = gpu.empty((batch_size, self.unitcount),
                                        split_axis)
         self.bias_ones_offsize = gpu.zeros((batch_size, 1), split_axis) + 1
         swap(self.activation, self.activation_offsize)
         swap(self.out, self.out_offsize)
         swap(self.error, self.error_offsize)
         swap(self.bias_ones, self.bias_ones_offsize)
     elif self.activation_offsize.shape[2] != batch_size:
         del self.activation
         del self.out
         del self.error
         del self.bias_ones
         self.create_buffers(batch_size)
     else:
         swap(self.activation, self.activation_offsize)
         swap(self.out, self.out_offsize)
         swap(self.error, self.error_offsize)
         swap(self.bias_ones, self.bias_ones_offsize)
Exemplo n.º 3
0
 def create_weights(self):
     self.log_network()
     if self.next_layer:
         self.w_next = gpu.array(create_uniform_rdm_weight(self.unitcount,self.next_layer.unitcount))
         self.b_next = gpu.zeros((1, self.next_layer.unitcount))
         self.m_next = gpu.zeros((self.unitcount, self.next_layer.unitcount))
         self.w_grad_next = gpu.zeros((self.unitcount, self.next_layer.unitcount))
         self.b_grad_next = gpu.zeros((1, self.next_layer.unitcount))   
         self.w_next_sync = gpu.zeros((self.unitcount,self.next_layer.unitcount))  
         if self.next_layer.config['compression'] == '1bit':
             self.errors = gpu.zeros_like(self.w_grad_next)
             self.posMask = gpu.zeros_like(self.w_grad_next)
             self.negMask = gpu.zeros_like(self.w_grad_next)
             self.w_grad_with_errors = gpu.zeros_like(self.w_grad_next)
             self.posCount = gpu.zeros((self.w_grad_next.shape_tensor[2],))
             self.negCount = gpu.zeros((self.w_grad_next.shape_tensor[2],))
             self.posAvg = gpu.zeros((self.w_grad_next.shape_tensor[2],))
             self.negAvg = gpu.zeros((self.w_grad_next.shape_tensor[2],))
         if self.next_layer.config['compression'] == '8bit':    
             self.max_value_buffer = gpu.empty_like(self.w_grad_next)
                
         if self.next_layer: self.next_layer.create_weights()
Exemplo n.º 4
0
 def handle_offsize(self, batch_size):
     if self.activation_offsize == None:
         split_axis = (2 if self.config['parallelism'] == 'data' else -1)
         self.activation_offsize = gpu.empty((batch_size,self.unitcount),split_axis)
         self.out_offsize = gpu.empty((batch_size,self.unitcount),split_axis)
         self.error_offsize = gpu.empty((batch_size,self.unitcount),split_axis)
         self.bias_ones_offsize = gpu.zeros((batch_size,1),split_axis)+1
         swap(self.activation, self.activation_offsize)
         swap(self.out, self.out_offsize)
         swap(self.error, self.error_offsize)
         swap(self.bias_ones, self.bias_ones_offsize)            
     elif self.activation_offsize.shape[2] != batch_size:
         del self.activation
         del self.out
         del self.error
         del self.bias_ones
         self.create_buffers(batch_size)
     else:
         swap(self.activation, self.activation_offsize)
         swap(self.out, self.out_offsize)
         swap(self.error, self.error_offsize)
         swap(self.bias_ones, self.bias_ones_offsize)