Exemplo n.º 1
0
 def __init__(self):
     self.ratio = 0.85
     self.min_match = 10
     # self.sift=cv2.xfeatures2d.SIFT_create()
     # self.sift = cv2.ORB_create(nfeatures=1000)
     self.sift = cv2.SIFT_create(nfeatures=1000)
     self.smoothing_window_size = 100
     self.img1 = None
     self.img2 = None
     self.shareview = None
     self.data1 = cudasift.PySiftData()
     self.data2 = cudasift.PySiftData()
     self.last_Hmatrix = np.ndarray(shape=(3, 3), dtype=float, order='F')
Exemplo n.º 2
0
 def test_01_02_speak_again(self):
     #
     # Check the four corners of a square
     #
     data = cudasift.PySiftData(100)
     img = np.zeros((100, 100), np.uint8)
     img[10:-9, 10] = 128
     img[10, 10:-9] = 128
     img[10:-9, -10] = 128
     img[-10, 10:-9] = 128
     cudasift.ExtractKeypoints(img, data)
     self.assertEqual(len(data), 4)
     df, keypoints = data.to_data_frame()
     idx = np.lexsort((df.xpos, df.ypos))
     #
     # Check that the four corners are just inside the square
     #
     for i in (0, 1):
         self.assertTrue(df.ypos[idx[i]] > 10 and df.ypos[idx[i]] < 15)
     for i in (2, 3):
         self.assertTrue(df.ypos[idx[i]] > 85 and df.ypos[idx[i]] < 90)
     for i in (0, 2):
         self.assertTrue(df.xpos[idx[i]] > 10 and df.xpos[idx[i]] < 15)
     for i in (1, 3):
         self.assertTrue(df.xpos[idx[i]] > 85 and df.xpos[idx[i]] < 90)
Exemplo n.º 3
0
 def test_01_04_match(self):
     #
     # A 3/4/5 right triangle
     #
     img = np.zeros((100, 100), np.uint8)
     img[10:90, 10] = 255
     img[10, 10:70] = 255
     img[np.arange(90, 9, -1),
         70 - (np.arange(80, -1, -1) * 3 / 4 + .5).astype(int)] = 255
     data1 = cudasift.PySiftData(100)
     cudasift.ExtractKeypoints(img, data1)
     data2 = cudasift.PySiftData(100)
     cudasift.ExtractKeypoints(img.transpose(), data2)
     cudasift.PyMatchSiftData(data1, data2)
     df1, keypoints1 = data1.to_data_frame()
     df2, keypoints2 = data2.to_data_frame()
     pass
Exemplo n.º 4
0
    def registration_gpu_old(self, img1, img2):
        t0 = time.time()
        img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
        img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
        data1 = cudasift.PySiftData()
        cudasift.ExtractKeypoints(img1, data1)
        data2 = cudasift.PySiftData()
        cudasift.ExtractKeypoints(img2, data2)
        printd("length:", len(data1), len(data2))
        cudasift.PyMatchSiftData(data1, data2)
        df1, keypoints1 = data1.to_data_frame()

        image1_kp = []
        image2_kp = []

        for index, k in df1.iterrows():
            image1_kp.append((k['xpos'], k['ypos']))
            image2_kp.append((k['match_xpos'], k['match_ypos']))

        image1_kp = np.float32(image1_kp)
        image2_kp = np.float32(image2_kp)

        # ------------compare the goodpoints position to decide the iamge sequence-------
        image1_kp_meanx = np.mean([i[0] for i in image1_kp])
        image2_kp_meanx = np.mean([i[0] for i in image2_kp])
        printd("Image1_kp meanX", image1_kp_meanx)
        printd("Image2_kp meanX", image2_kp_meanx)

        if image1_kp_meanx > image2_kp_meanx:
            seqFlag = 0  # img1|img2
            H, status = cv2.findHomography(image2_kp, image1_kp, cv2.RANSAC,
                                           5.0)
        else:
            seqFlag = 1  # img2|img1
            H, status = cv2.findHomography(image1_kp, image2_kp, cv2.RANSAC,
                                           5.0)
        # printd("Finish Regis:", H, seqFlag)
        printd("TIME: ", time.time() - t0)
        return H, seqFlag
Exemplo n.º 5
0
 def test_01_01_nothing(self):
     # "How? Nothing will come of nothing.", Lear 1:1
     #
     data = cudasift.PySiftData(100)
     img = np.zeros((100, 100), np.uint8)
     cudasift.ExtractKeypoints(img, data)
     self.assertEqual(len(data), 0)
     df, keypoints = data.to_data_frame()
     self.assertEqual(len(df), 0)
     self.assertSequenceEqual(keypoints.shape, (0, 128))
     for column in "xpos", "ypos", "scale", "sharpness", "edgeness",\
             "orientation", "score", "ambiguity", "match", "match_xpos", \
             "match_ypos", "match_error", "subsampling":
         assert column in df.columns
Exemplo n.º 6
0
 def test_01_03_from_data_frame(self):
     data = cudasift.PySiftData(100)
     img = np.zeros((100, 100), np.uint8)
     img[10:-9, 10] = 128
     img[10, 10:-9] = 128
     img[10:-9, -10] = 128
     img[-10, 10:-9] = 128
     cudasift.ExtractKeypoints(img, data)
     self.assertEqual(len(data), 4)
     df, keypoints = data.to_data_frame()
     data2 = cudasift.PySiftData.from_data_frame(df, keypoints)
     df2, keypoints2 = data2.to_data_frame()
     np.testing.assert_array_equal(keypoints, keypoints2)
     np.testing.assert_array_equal(df2.xpos, df.xpos)
     np.testing.assert_array_equal(df.ypos, df2.ypos)
     np.testing.assert_array_equal(df.scale, df2.scale)
     np.testing.assert_array_equal(df.sharpness, df2.sharpness)
     np.testing.assert_array_equal(df.edgeness, df2.edgeness)
     np.testing.assert_array_equal(df.score, df2.score)
     np.testing.assert_array_equal(df.ambiguity, df2.ambiguity)
Exemplo n.º 7
0
def extract_features(array, nfeatures=None, **kwargs):
    """
    A custom docstring.
    """
    if not nfeatures:
        nfeatures = int(max(array.shape) / 1.25)
    else:
        warnings.warn(
            'NFeatures specified with the CudaSift implementation.  Please ensure the distribution of keypoints is what you expect.'
        )

    siftdata = cs.PySiftData(nfeatures)
    cs.ExtractKeypoints(array, siftdata, **kwargs)
    keypoints, descriptors = siftdata.to_data_frame()
    keypoints = keypoints[[
        'x', 'y', 'scale', 'sharpness', 'edgeness', 'orientation', 'score',
        'ambiguity'
    ]]
    # Set the columns that have unfilled values to zero to avoid confusion
    keypoints['score'] = 0.0
    keypoints['ambiguity'] = 0.0

    return keypoints, descriptors
Exemplo n.º 8
0
    cv_kps = []
    keypoints_1 = keypoints_1[['xpos', 'ypos', 'scale', 'sharpness', 'edgeness', 'orientation', 'score', 'ambiguity']]
 
    for i in range(len(keypoints_1)):
        x = keypoints_1['xpos'][i]
        y = keypoints_1['ypos'][i]
        size = keypoints_1['scale'][i]
        kp = cv2.KeyPoint(x,y,size)
        cv_kps.append(kp) 
    return cv_kps

if 1:
    array = img1.copy()
    gray1 = cv2.cvtColor(array, cv2.COLOR_BGR2GRAY)
    nfeatures = int(max(gray1.shape) / 1.25)
    siftdata1 = cs.PySiftData(nfeatures)
    ret = cs.ExtractKeypoints(gray1, siftdata1, thresh=2,upScale=True)
    #  cs.PyPrintSiftData(siftdata1)# 打印信息
    keypoints_1, descriptors_1 = siftdata1.to_data_frame()
    descriptors_1 = (descriptors_1 * 255).astype("float32")
    keypoints_1 = to_cvKeyPoints(keypoints_1)
    array = img2.copy()
    #  print("array:",array.shape)
    gray2 = cv2.cvtColor(array, cv2.COLOR_BGR2GRAY)
    nfeatures = int(max(gray2.shape) / 1.25)
    siftdata2 = cs.PySiftData(nfeatures)
    ret = cs.ExtractKeypoints(gray1, siftdata2, thresh=2,upScale=True)
    keypoints_2, descriptors_2 = siftdata2.to_data_frame()
    descriptors_2 = (descriptors_2 * 255).astype("float32")
    keypoints_2 = to_cvKeyPoints(keypoints_2)