Exemplo n.º 1
0
def add_batch(batch_index, pCS, orphans, fasta_d, cpus, dun_use_partial):
    """
    1. align batch<i>.fasta against seed<i>.S.fasta, process -> write remains to batch<i>.remains.fasta
    2. align batch<i>.remains.fasta against seed<i>.orphans.fasta -> write remains to batch<i>.remains2.fasta
    3. self align batch<i>.remains2.fasta -> combine remains+orphans to new orphans
    4. write out seed<i+1>.S.fasta and seed<i+1>.orphans.fasta

    """
    cur_file = "batch{0}.fasta".format(batch_index)
    seqids = set([r.id for r in SeqIO.parse(open(cur_file), 'fasta')])
    o = ar.run_minimap(cur_file,
                       "seed{0}.S.fasta".format(batch_index),
                       cpus=cpus)
    print("processing", o, file=sys.stderr)
    pCS, remains = sp.process_align_to_pCS(o,
                                           seqids,
                                           pCS,
                                           MiniReader,
                                           dun_use_partial=dun_use_partial)
    print("pCS: {0}, tucked: {1}, orphans: {2}, remains: {3}".format( \
        len(pCS.S), sum(v == 'T' for v in pCS.seq_stat.values()), len(orphans), len(remains)), file=sys.stderr)
    # write batch<i>.remains.fasta
    cur_file = "batch{0}.remains.fasta".format(batch_index)
    FileIO.write_seqids_to_fasta(remains, cur_file, fasta_d)
    o = ar.run_minimap(cur_file,
                       "seed{0}.orphans.fasta".format(batch_index),
                       cpus=cpus)
    print("processing", o, file=sys.stderr)
    pCS, orphans, remains = sp.process_align_to_orphan(
        o, remains, orphans, pCS, MiniReader, dun_use_partial=dun_use_partial)
    print("pCS: {0}, tucked: {1}, orphans: {2}, remains: {3}".format( \
        len(pCS.S), sum(v == 'T' for v in pCS.seq_stat.values()), len(orphans), len(remains)), file=sys.stderr)
    # write batch<i>.remains2.fasta and self align
    cur_file = "batch{0}.remains2.fasta".format(batch_index)
    FileIO.write_seqids_to_fasta(remains, cur_file, fasta_d)
    o = ar.run_minimap(cur_file, cur_file, cpus=cpus)
    print("processing", o, file=sys.stderr)
    pCS, remains = sp.process_self_align_into_seed(
        o, remains, MiniReader, pCS, dun_use_partial=dun_use_partial)
    print("pCS: {0}, tucked: {1}, orphans: {2}, remains: {3}".format( \
        len(pCS.S), sum(v == 'T' for v in pCS.seq_stat.values()), len(orphans), len(remains)), file=sys.stderr)
    # combine remains+orphans to new orphans
    orphans = orphans.union(remains)
    FileIO.write_preClusterSet_to_fasta(
        pCS, "seed{0}.S.fasta".format(batch_index + 1), fasta_d)
    FileIO.write_seqids_to_fasta(
        orphans, "seed{0}.orphans.fasta".format(batch_index + 1), fasta_d)

    return pCS, orphans
Exemplo n.º 2
0
def add_batch(batch_index, pCS, orphans, fasta_d, cpus, dun_use_partial):
    """
    1. align batch<i>.fasta against seed<i>.S.fasta, process -> write remains to batch<i>.remains.fasta
    2. align batch<i>.remains.fasta against seed<i>.orphans.fasta -> write remains to batch<i>.remains2.fasta
    3. self align batch<i>.remains2.fasta -> combine remains+orphans to new orphans
    4. write out seed<i+1>.S.fasta and seed<i+1>.orphans.fasta

    """
    cur_file = "batch{0}.fasta".format(batch_index)
    seqids = set([r.id for r in SeqIO.parse(open(cur_file), 'fasta')])
    o = ar.run_minimap(cur_file, "seed{0}.S.fasta".format(batch_index), cpus=cpus)
    print >> sys.stderr, "processing", o
    pCS, remains = sp.process_align_to_pCS(o, seqids, pCS, MiniReader, dun_use_partial=dun_use_partial)
    print >> sys.stderr, "pCS: {0}, tucked: {1}, orphans: {2}, remains: {3}".format( \
        len(pCS.S), sum(v == 'T' for v in pCS.seq_stat.itervalues()), len(orphans), len(remains))
    # write batch<i>.remains.fasta
    cur_file = "batch{0}.remains.fasta".format(batch_index)
    FileIO.write_seqids_to_fasta(remains, cur_file, fasta_d)
    o = ar.run_minimap(cur_file, "seed{0}.orphans.fasta".format(batch_index), cpus=cpus)
    print >> sys.stderr, "processing", o
    pCS, orphans, remains = sp.process_align_to_orphan(o, remains, orphans, pCS, MiniReader, dun_use_partial=dun_use_partial)
    print >> sys.stderr, "pCS: {0}, tucked: {1}, orphans: {2}, remains: {3}".format( \
        len(pCS.S), sum(v == 'T' for v in pCS.seq_stat.itervalues()), len(orphans), len(remains))
    # write batch<i>.remains2.fasta and self align
    cur_file = "batch{0}.remains2.fasta".format(batch_index)
    FileIO.write_seqids_to_fasta(remains, cur_file, fasta_d)
    o = ar.run_minimap(cur_file, cur_file, cpus=cpus)
    print >> sys.stderr, "processing", o
    pCS, remains = sp.process_self_align_into_seed(o, remains, MiniReader, pCS, dun_use_partial=dun_use_partial)
    print >> sys.stderr, "pCS: {0}, tucked: {1}, orphans: {2}, remains: {3}".format( \
        len(pCS.S), sum(v == 'T' for v in pCS.seq_stat.itervalues()), len(orphans), len(remains))
    # combine remains+orphans to new orphans
    orphans = orphans.union(remains)
    FileIO.write_preClusterSet_to_fasta(pCS, "seed{0}.S.fasta".format(batch_index+1), fasta_d)
    FileIO.write_seqids_to_fasta(orphans, "seed{0}.orphans.fasta".format(batch_index+1), fasta_d)

    return pCS, orphans
Exemplo n.º 3
0
def main(cpus, dun_make_bins=False, dun_use_partial=False, num_seqs_per_batch=100000, dun_cleanup_files=False):
    print "Indexing isoseq_flnc.fasta using LazyFastaReader..."
    d = LazyFastaReader('isoseq_flnc.fasta')

    print "Splitting input isoseq_flnc.fasta into seed/batches..."
    num_batchs = create_seed_n_batch_files(input='isoseq_flnc.fasta', fasta_d=d, seed_filename='seed0.fasta', batch_pre='batch', num_seqs_per_batch=num_seqs_per_batch)


    # step1. run minimap of seed0 against itself and process
    o = ar.run_minimap('seed0.fasta', 'seed0.fasta', cpus=cpus)
    seqids = set([r.id for r in SeqIO.parse(open('seed0.fasta'),'fasta')])
    pCS, orphans = sp.process_self_align_into_seed(o, seqids, MiniReader, dun_use_partial=dun_use_partial)
    # keep stats
    size_S, size_tucked, size_orphans = len(pCS.S), sum(v=='T' for v in pCS.seq_stat.itervalues()), len(orphans)
    print "seed 0 initial: S {0}, tucked {1}, orphans {2}".format(size_S, size_tucked, size_orphans)

    # write out seed1.S.fasta and seed1.orphans.fasta
    FileIO.write_preClusterSet_to_fasta(pCS, 'seed1.S.fasta', d)
    FileIO.write_seqids_to_fasta(orphans, 'seed1.orphans.fasta', d)
    # step 2a. minimap batch1 against seed1.S and process

    for i in xrange(1, num_batchs):
        pCS, orphans = add_batch(i, pCS, orphans, d, cpus=cpus, dun_use_partial=dun_use_partial)
        cleanup_precluster_intermediate_files(i)

    # detect PCR chimeras from orphans
    chimeras = detect_PCR_chimeras(orphans, d)
    orphans = orphans.difference(chimeras)

    FileIO.write_seqids_to_fasta(orphans, "preCluster_out.orphans.fasta", d)
    FileIO.write_seqids_to_fasta(chimeras, "preCluster_out.chimeras.fasta", d)


    tucked_seqids = []
    # dump pCS, orphans, chimeras to a pickle
    # can't dump yet --- since pCS is an object
    #with open('preCluster.output.pickle', 'w') as f:
    #    dump({'pCS': pCS, 'chimeras': chimeras, 'orphans': orphans}, f)
    # write CSV file
    with open('preCluster.output.csv', 'w') as f:
        f.write("seqid,stat\n")
        for x, stat in pCS.seq_stat.iteritems():
            if stat == 'T':
                f.write("{0},tucked\n".format(x))
                tucked_seqids.append(x)
            elif stat == 'M': f.write("{0},{1}\n".format(x, pCS.seq_map[x]))
        for x in orphans: f.write("{0},orphan\n".format(x))
        for x in chimeras: f.write("{0},chimera\n".format(x))

    # Liz: currently not using tucked...
    #FileIO.write_seqids_to_fasta(tucked_seqids, "preCluster_out.tucked.fasta", d)

    infof = open('preCluster.cluster_info.csv', 'w')
    infof.write("cluster,size\n")
    # write out a directory per preCluster cid in preCluster_out/<cid>
    # Liz note: right now, write out even directories with just 1 sequence
    # (we know they have "tucked" support, so can run Partial/Arrow on it)
    #singlef = open("preCluster_out.singles.fasta", 'w')
    for cid in pCS.S:
    #    if pCS.S[cid].size == 1:
    #        r = d[pCS.S[cid].members[0]]
    #        singlef.write(">{0}\n{1}\n".format(r.id, r.seq))
    #    else:
        if True:
            if not dun_make_bins:
                dirname = os.path.join("preCluster_out", str(cid))
                os.makedirs(dirname)
                file = os.path.join(dirname, 'isoseq_flnc.fasta')
                FileIO.write_seqids_to_fasta(pCS.S[cid].members, file, d)
            infof.write("{0},{1}\n".format(cid, len(pCS.S[cid].members)))
    #singlef.close()
    infof.close()

    if not dun_cleanup_files: # clean up all seed* and batch* files
        for file in glob.glob('batch*fasta*'):
            os.remove(file)
        for file in glob.glob('seed*fasta*'):
            os.remove(file)
Exemplo n.º 4
0
def main(cpus, dun_make_bins=False, dun_use_partial=False, num_seqs_per_batch=100000, dun_cleanup_files=False):
    print "Indexing isoseq_flnc.fasta using LazyFastaReader..."
    d = LazyFastaReader('isoseq_flnc.fasta')

    print "Splitting input isoseq_flnc.fasta into seed/batches..."
    num_batchs = create_seed_n_batch_files(input='isoseq_flnc.fasta', fasta_d=d, seed_filename='seed0.fasta', batch_pre='batch', num_seqs_per_batch=num_seqs_per_batch)


    # step1. run minimap of seed0 against itself and process
    o = ar.run_minimap('seed0.fasta', 'seed0.fasta', cpus=cpus)
    seqids = set([r.id for r in SeqIO.parse(open('seed0.fasta'),'fasta')])
    pCS, orphans = sp.process_self_align_into_seed(o, seqids, MiniReader, dun_use_partial=dun_use_partial)
    # keep stats
    size_S, size_tucked, size_orphans = len(pCS.S), sum(v=='T' for v in pCS.seq_stat.itervalues()), len(orphans)
    print "seed 0 initial: S {0}, tucked {1}, orphans {2}".format(size_S, size_tucked, size_orphans)

    # write out seed1.S.fasta and seed1.orphans.fasta
    FileIO.write_preClusterSet_to_fasta(pCS, 'seed1.S.fasta', d)
    FileIO.write_seqids_to_fasta(orphans, 'seed1.orphans.fasta', d)
    # step 2a. minimap batch1 against seed1.S and process

    for i in xrange(1, num_batchs):
        pCS, orphans = add_batch(i, pCS, orphans, d, cpus=cpus, dun_use_partial=dun_use_partial)
        cleanup_precluster_intermediate_files(i)

    # detect PCR chimeras from orphans
    chimeras = detect_PCR_chimeras(orphans, d)
    orphans = orphans.difference(chimeras)

    FileIO.write_seqids_to_fasta(orphans, "preCluster_out.orphans.fasta", d)
    FileIO.write_seqids_to_fasta(chimeras, "preCluster_out.chimeras.fasta", d)


    tucked_seqids = []
    # dump pCS, orphans, chimeras to a pickle
    # can't dump yet --- since pCS is an object
    #with open('preCluster.output.pickle', 'w') as f:
    #    dump({'pCS': pCS, 'chimeras': chimeras, 'orphans': orphans}, f)
    # write CSV file
    with open('preCluster.output.csv', 'w') as f:
        f.write("seqid,stat\n")
        for x, stat in pCS.seq_stat.iteritems():
            if stat == 'T':
                f.write("{0},tucked\n".format(x))
                tucked_seqids.append(x)
            elif stat == 'M': f.write("{0},{1}\n".format(x, pCS.seq_map[x]))
        for x in orphans: f.write("{0},orphan\n".format(x))
        for x in chimeras: f.write("{0},chimera\n".format(x))

    # Liz: currently not using tucked...
    #FileIO.write_seqids_to_fasta(tucked_seqids, "preCluster_out.tucked.fasta", d)

    infof = open('preCluster.cluster_info.csv', 'w')
    infof.write("cluster,size\n")
    # write out a directory per preCluster cid in preCluster_out/<cid>
    # Liz note: right now, write out even directories with just 1 sequence
    # (we know they have "tucked" support, so can run Partial/Arrow on it)
    #singlef = open("preCluster_out.singles.fasta", 'w')
    for cid in pCS.S:
    #    if pCS.S[cid].size == 1:
    #        r = d[pCS.S[cid].members[0]]
    #        singlef.write(">{0}\n{1}\n".format(r.id, r.seq))
    #    else:
        if True:
            if not dun_make_bins:
                dirname = os.path.join("preCluster_out", str(cid))
                os.makedirs(dirname)
                file = os.path.join(dirname, 'isoseq_flnc.fasta')
                FileIO.write_seqids_to_fasta(pCS.S[cid].members, file, d)
            infof.write("{0},{1}\n".format(cid, len(pCS.S[cid].members)))
    #singlef.close()
    infof.close()

    if not dun_cleanup_files: # clean up all seed* and batch* files
        for file in glob.glob('batch*fasta*'):
            os.remove(file)
        for file in glob.glob('seed*fasta*'):
            os.remove(file)