Exemplo n.º 1
0
 def test_goodness_of_fit(self):
     trial = 100
     vals = [self.rs.choice(3, 1, True, [0.3, 0.3, 0.4]).get()
             for _ in six.moves.xrange(trial)]
     counts = numpy.histogram(vals, bins=numpy.arange(4))[0]
     expected = numpy.array([30, 30, 40])
     self.assertTrue(hypothesis.chi_square_test(counts, expected))
Exemplo n.º 2
0
 def test_goodness_of_fit(self):
     trial = 100
     vals = self.generate_many(3, 1, True, [0.3, 0.3, 0.4], _count=trial)
     vals = [val.get() for val in vals]
     counts = numpy.histogram(vals, bins=numpy.arange(4))[0]
     expected = numpy.array([30, 30, 40])
     assert hypothesis.chi_square_test(counts, expected)
Exemplo n.º 3
0
 def test_goodness_of_fit(self):
     mx = 5
     trial = 100
     vals = [random.randint(mx).get() for _ in six.moves.xrange(trial)]
     counts = numpy.histogram(vals, bins=numpy.arange(mx + 1))[0]
     expected = numpy.array([float(trial) / mx] * mx)
     self.assertTrue(hypothesis.chi_square_test(counts, expected))
Exemplo n.º 4
0
 def test_goodness_of_fit(self):
     mx = 5
     trial = 100
     vals = [random.randint(mx).get() for _ in six.moves.xrange(trial)]
     counts = numpy.histogram(vals, bins=numpy.arange(mx + 1))[0]
     expected = numpy.array([float(trial) / mx] * mx)
     self.assertTrue(hypothesis.chi_square_test(counts, expected))
Exemplo n.º 5
0
 def test_goodness_of_fit(self):
     trial = 100
     vals = [self.rs.choice(3, 1, True, [0.3, 0.3, 0.4]).get()
             for _ in six.moves.xrange(trial)]
     counts = numpy.histogram(vals, bins=numpy.arange(4))[0]
     expected = numpy.array([30, 30, 40])
     self.assertTrue(hypothesis.chi_square_test(counts, expected))
Exemplo n.º 6
0
 def test_goodness_of_fit(self):
     mx = 5
     trial = 300
     vals = self.generate_many(mx, None, _count=trial)
     vals = [val.get() for val in vals]
     counts = numpy.histogram(vals, bins=numpy.arange(mx + 2))[0]
     expected = numpy.array([float(trial) / (mx + 1)] * (mx + 1))
     assert hypothesis.chi_square_test(counts, expected)
Exemplo n.º 7
0
 def test_goodness_of_fit(self):
     mx = 5
     trial = 100
     vals = [self.rs.interval(mx, None).get()
             for _ in six.moves.xrange(trial)]
     counts = numpy.histogram(vals, bins=numpy.arange(mx + 2))[0]
     expected = numpy.array([float(trial) / (mx + 1)] * (mx + 1))
     self.assertTrue(hypothesis.chi_square_test(counts, expected))
Exemplo n.º 8
0
 def test_goodness_of_fit_2(self):
     vals = self.generate(3, (5, 20), True, [0.3, 0.3, 0.4]).get()
     counts = numpy.histogram(vals, bins=numpy.arange(4))[0]
     expected = numpy.array([30, 30, 40])
     assert hypothesis.chi_square_test(counts, expected)
Exemplo n.º 9
0
 def test_goodness_of_fit_2(self):
     mx = 5
     vals = self.generate(mx, (5, 5)).get()
     counts = numpy.histogram(vals, bins=numpy.arange(mx + 2))[0]
     expected = numpy.array([float(vals.size) / (mx + 1)] * (mx + 1))
     assert hypothesis.chi_square_test(counts, expected)
Exemplo n.º 10
0
 def test_goodness_of_fit_2(self):
     mx = 5
     vals = self.rs.interval(mx, (5, 5)).get()
     counts = numpy.histogram(vals, bins=numpy.arange(mx + 2))[0]
     expected = numpy.array([float(vals.size) / mx + 1] * (mx + 1))
     self.assertTrue(hypothesis.chi_square_test(counts, expected))
Exemplo n.º 11
0
 def test_goodness_of_fit_2(self):
     mx = 5
     vals = random.randint(mx, size=(5, 20)).get()
     counts = numpy.histogram(vals, bins=numpy.arange(mx + 1))[0]
     expected = numpy.array([float(vals.size) / mx] * mx)
     self.assertTrue(hypothesis.chi_square_test(counts, expected))
Exemplo n.º 12
0
 def test_goodness_of_fit_2(self):
     mx = 5
     vals = self.rs.interval(mx, (5, 5)).get()
     counts = numpy.histogram(vals, bins=numpy.arange(mx + 2))[0]
     expected = numpy.array([float(vals.size) / mx + 1] * (mx + 1))
     self.assertTrue(hypothesis.chi_square_test(counts, expected))
Exemplo n.º 13
0
 def test_goodness_of_fit_2(self):
     mx = 5
     vals = random.randint(mx, size=(5, 20)).get()
     counts = numpy.histogram(vals, bins=numpy.arange(mx + 1))[0]
     expected = numpy.array([float(vals.size) / mx] * mx)
     self.assertTrue(hypothesis.chi_square_test(counts, expected))
Exemplo n.º 14
0
 def test_goodness_of_fit_2(self):
     vals = self.rs.choice(3, (5, 20), True, [0.3, 0.3, 0.4]).get()
     counts = numpy.histogram(vals, bins=numpy.arange(4))[0]
     expected = numpy.array([30, 30, 40])
     self.assertTrue(hypothesis.chi_square_test(counts, expected))