Exemplo n.º 1
0
def compute_HRP_weights(covariances, res_order):
    weights = pd.Series(1, index=res_order)
    clustered_alphas = [res_order]

    while len(clustered_alphas) > 0:
        clustered_alphas = [
            cluster[start:end] for cluster in clustered_alphas
            for start, end in ((0, len(cluster) // 2), (len(cluster) // 2,
                                                        len(cluster)))
            if len(cluster) > 1
        ]
        for subcluster in range(0, len(clustered_alphas), 2):
            left_cluster = clustered_alphas[subcluster]
            right_cluster = clustered_alphas[subcluster + 1]

            left_subcovar = covariances[left_cluster, :][:, left_cluster]
            inv_diag = 1 / cupy.diag(left_subcovar)
            parity_w = inv_diag * (1 / cupy.sum(inv_diag))
            left_cluster_var = cupy.dot(parity_w,
                                        cupy.dot(left_subcovar, parity_w))

            right_subcovar = covariances[right_cluster, :][:, right_cluster]
            inv_diag = 1 / cupy.diag(right_subcovar)
            parity_w = inv_diag * (1 / cupy.sum(inv_diag))
            right_cluster_var = cupy.dot(parity_w,
                                         cupy.dot(right_subcovar, parity_w))

            alloc_factor = 1 - left_cluster_var / \
                (left_cluster_var + right_cluster_var)

            weights[left_cluster] *= alloc_factor.item()
            weights[right_cluster] *= 1 - alloc_factor.item()

    return weights
Exemplo n.º 2
0
 def _mutate(self):
     weight_mask = cp.random.normal(
         size=(self.weights.shape), dtype='single') * .05 * cp.tile(
             cp.triu(cp.ones(shape=(self.total, self.total), dtype='bool_'),
                     1), (self.pop_size, 1, 1)) * (cp.random.uniform(
                         size=(self.weights.shape), dtype='single') <
                                                   .2) * (self.weights != 0)
     new_weights_mask = cp.random.normal(
         size=(self.weights.shape), dtype='single') * .05 * cp.tile(
             cp.triu(cp.ones(shape=(self.total, self.total), dtype='bool_'),
                     1), (self.pop_size, 1, 1)) * (cp.random.uniform(
                         size=(self.weights.shape),
                         dtype='single') < .05) * (self.weights == 0)
     self.weights += weight_mask + new_weights_mask
     self.weights *= (cp.random.uniform(size=self.weights.shape,
                                        dtype='single') < 1)
     self.weights[:, :self.inputs, :self.inputs] = 0
     self.weights[:, -self.outputs:, -self.outputs:] = cp.tile(
         cp.diag(
             cp.diag(
                 cp.ones(shape=(self.outputs, self.outputs),
                         dtype='bool_'))), (self.pop_size, 1, 1))
     self.biases += cp.random.normal(
         size=self.biases.shape, dtype='single') * .05 * (cp.random.normal(
             size=self.biases.shape, dtype='single') < .2)
Exemplo n.º 3
0
 def Vpi(self, X, Y, a, b, OT_plan):
     """Return the second order matrix of the displacements: sum_ij { (OT_plan)_ij (X_i-Y_j)(X_i-Y_j)^T }."""
     A = X.T.dot(OT_plan).dot(Y)
     if self.use_gpu:
         return X.T.dot(cp.diag(a)).dot(X) + Y.T.dot(cp.diag(b)).dot(Y) - A - A.T
     else:
         return X.T.dot(np.diag(a)).dot(X) + Y.T.dot(np.diag(b)).dot(Y) - A - A.T
Exemplo n.º 4
0
 def initialize(self, a, b, X, Y, Omega, k):
     """Initialize Omega with the projection onto the subspace spanned by top-k eigenvectors of V_pi*, where pi* (=OT_plan) is the (classical) optimal transport plan."""
     if self.verbose:
         print('Initializing')
         
     n = X.shape[0]
     m = Y.shape[0]
     
     # Compute the cost matrix
     if self.use_gpu:
         ones = cp.ones((n,m))
         C = cp.diag(cp.diag(X.dot(X.T))).dot(ones) + ones.dot(cp.diag(cp.diag(Y.dot(Y.T)))) - 2*X.dot(Y.T)
     else:
         ones = np.ones((n,m))
         C = np.diag(np.diag(X.dot(X.T))).dot(ones) + ones.dot(np.diag(np.diag(Y.dot(Y.T)))) - 2*X.dot(Y.T)
     
     # Compute the OT plan
     _, OT_plan = self.OT(a, b, C)
     V = self.Vpi(X, Y, a, b, OT_plan)
     
     # Eigendecompose V
     d = V.shape[0]
     if self.use_gpu:
         _, eigenvectors = cp.linalg.eigh(V)
         eigenvectors = eigenvectors[:,-k:]
     else:
         _, eigenvectors = sp.linalg.eigh(V, eigvals=(d-k,d-1))
     
     # Return the projection
     Omega = eigenvectors.dot(eigenvectors.T)
     return Omega
Exemplo n.º 5
0
def evol(s, B, U, chi, d):
    for i_bond in [0, 1]:
        ia = np.mod(i_bond - 1, 2)
        ib = np.mod(i_bond, 2)
        ic = np.mod(i_bond + 1, 2)
        chia = B[ib].shape[1]
        chic = B[ic].shape[2]
        # Construct theta matrix and time evolution #
        theta = cp.tensordot(B[ib], B[ic], axes=(2, 1))  # i a j b
        theta = cp.tensordot(U, theta, axes=([2, 3], [0, 2]))  # ip jp a b
        theta = cp.tensordot(cp.diag(s[ia]), theta, axes=([1, 2]))  # a ip jp b
        theta = cp.reshape(cp.transpose(theta, (1, 0, 2, 3)),
                           (d * chia, d * chic))  # ip a jp b
        # Schmidt decomposition #
        X, Y, Z = cp.linalg.svd(theta, full_matrices=0)
        chi2 = np.min([cp.sum(Y > 10.**(-10)).get(), chi])
        piv = cp.zeros(len(Y), cp.bool)
        piv[(cp.argsort(Y)[::-1])[:chi2]] = True
        Y = Y[piv]
        invsq = cp.sqrt(sum(Y**2))
        X = X[:, piv]
        Z = Z[piv, :]
        # Obtain the new values for B and s #
        s[ib] = Y / invsq
        X = cp.reshape(X, (d, chia, chi2))
        X = cp.transpose(cp.tensordot(cp.diag(s[ia]**(-1)), X, axes=(1, 1)),
                         (1, 0, 2))
        B[ib] = cp.tensordot(X, cp.diag(s[ib]), axes=(2, 0))
        B[ic] = cp.transpose(cp.reshape(Z, (chi2, d, chic)), (1, 0, 2))

    return s, B
Exemplo n.º 6
0
def xx(x):
	RL = [1.0, ]
	iRL = [1.0, ]

	S = cp.matmul(x.T, x).reshape(32, 32, 32, 32)
	D = cp.zeros((34, 34), dtype = cp.float32)
	#print("before",S[:][0][0][0])
	#print("before",D)
	conv3check(conv_blocks, conv_threads, (S, S, D))
	#print("after",S[:][0][0][0])
	#print("after",D)
	T = cp.zeros((32, 32, 32, 32), dtype = cp.float32)
	if not fix:
		T += S

	for i in range(1, d - 1):
		#cupy.diag only take diagonal array output length 1024
		#cupy.sqrt Elementwise square root
		L = cp.sqrt(cp.diag(S.reshape(1024, 1024)).reshape(32, 32))
		iL = 1.0 / L
		RL.append(L)
		iRL.append(iL)
		trans(trans_blocks, trans_threads, (S, T, L, L, iL, iL))
		conv3(conv_blocks, conv_threads, (S, S))
		conv3(conv_blocks, conv_threads, (T, T))

	L = cp.sqrt(cp.diag(S.reshape(1024, 1024)).reshape(32, 32))
	iL = 1.0 / L
	RL.append(L)
	iRL.append(iL)
	trans(trans_blocks, trans_threads, (S, T, L, L, iL, iL))	
	
	if fix:
		T -= S
	return RL, iRL
Exemplo n.º 7
0
def xx(x):
    RL = [
        1.0,
    ]
    iRL = [
        1.0,
    ]
    S = cp.matmul(x.T, x).reshape(32, 32, 32, 32)
    conv3(conv_blocks, conv_threads, (S, S))
    T = cp.zeros((32, 32, 32, 32), dtype=cp.float32)
    if not fix:
        T += S
    for i in range(1, d - 1):
        L = cp.sqrt(cp.diag(S.reshape(1024, 1024)).reshape(32, 32))
        iL = 1.0 / L
        RL.append(L)
        iRL.append(iL)
        trans(trans_blocks, trans_threads, (S, T, L, L, iL, iL))
        conv3(conv_blocks, conv_threads, (S, S))
        conv3(conv_blocks, conv_threads, (T, T))
    L = cp.sqrt(cp.diag(S.reshape(1024, 1024)).reshape(32, 32))
    iL = 1.0 / L
    RL.append(L)
    iRL.append(iL)
    trans(trans_blocks, trans_threads, (S, T, L, L, iL, iL))
    if fix:
        T -= S
    return RL, iRL
Exemplo n.º 8
0
 def test_dgmm_out(self, dtype):
     self._setup(dtype)
     if self.side == 'L':
         ref = cupy.diag(self.x) @ self.a
     elif self.side == 'R':
         ref = self.a @ cupy.diag(self.x)
     c = cupy.empty(self.shape, order=self.orderc, dtype=dtype)
     cublas.dgmm(self.side, self.a, self.x, out=c)
     cupy.testing.assert_allclose(c, ref, rtol=self.tol, atol=self.tol)
Exemplo n.º 9
0
 def test_gdmm_incx_minus_one(self, dtype):
     if self.orderc != 'F':
         raise unittest.SkipTest()
     self._setup(dtype)
     if self.side == 'L':
         ref = cupy.diag(self.x[::-1]) @ self.a
     elif self.side == 'R':
         ref = self.a @ cupy.diag(self.x[::-1])
     c = cublas.dgmm(self.side, self.a, self.x, incx=-1)
     cupy.testing.assert_allclose(c, ref, rtol=self.tol, atol=self.tol)
Exemplo n.º 10
0
 def test_dgmm_inplace(self, dtype):
     if self.orderc != 'F':
         pytest.skip()
     self._setup(dtype)
     if self.side == 'L':
         ref = cupy.diag(self.x) @ self.a
     elif self.side == 'R':
         ref = self.a @ cupy.diag(self.x)
     cublas.dgmm(self.side, self.a, self.x, out=self.a)
     cupy.testing.assert_allclose(self.a, ref, rtol=self.tol, atol=self.tol)
Exemplo n.º 11
0
 def test_dgmm(self, dtype):
     if self.orderc != 'F':
         raise unittest.SkipTest()
     self._setup(dtype)
     if self.side == 'L':
         ref = cupy.diag(self.x) @ self.a
     elif self.side == 'R':
         ref = self.a @ cupy.diag(self.x)
     c = cublas.dgmm(self.side, self.a, self.x)
     cupy.testing.assert_allclose(c, ref, rtol=self.tol, atol=self.tol)
Exemplo n.º 12
0
 def Mahalanobis(self, X, Y, Omega):
     """Return the matrix of Mahalanobis costs."""
     n = X.shape[0]
     m = Y.shape[0]
     if self.use_gpu:
         ones = cp.ones((n,m))
         return cp.diag(cp.diag(X.dot(Omega).dot(X.T))).dot(ones) + ones.dot(cp.diag(cp.diag(Y.dot(Omega).dot(Y.T)))) - 2*X.dot(Omega).dot(Y.T)
     else:
         ones = np.ones((n,m))
         return np.diag(np.diag(X.dot(Omega).dot(X.T))).dot(ones) + ones.dot(np.diag(np.diag(Y.dot(Omega).dot(Y.T)))) - 2*X.dot(Omega).dot(Y.T)
Exemplo n.º 13
0
def magnetization(s, B, d):
    sz = cp.diag([Sz(conf, 0) for conf in range(0, d)])
    #   sz=cp.array([[0,1],[1,0]])
    mag = cp.array(0., dtype=np.float32)
    for i_bond in range(2):
        sB = cp.tensordot(cp.diag(s[np.mod(i_bond - 1, 2)]),
                          B[i_bond],
                          axes=(1, 1))
        C = cp.tensordot(sB, cp.conj(sB), axes=([0, 2], [0, 2]))
        mag += cp.real(cp.tensordot(C, sz, axes=([0, 1], [0, 1])).get())
    return mag * 0.5
Exemplo n.º 14
0
 def test_dgmm_x_matrix(self, dtype):
     if self.orderc != 'F':
         pytest.skip()
     self._setup(dtype, xdim=2)
     if self.side == 'L':
         ref = cupy.diag(cupy.diag(self.x)) @ self.a
         incx = self.shape[0] + 1
     elif self.side == 'R':
         ref = self.a @ cupy.diag(cupy.diag(self.x))
         incx = self.shape[1] + 1
     c = cublas.dgmm(self.side, self.a, self.x, incx=incx)
     cupy.testing.assert_allclose(c, ref, rtol=self.tol, atol=self.tol)
Exemplo n.º 15
0
 def test_dgmm_incx_minus_one(self, dtype):
     if self.orderc != 'F':
         pytest.skip()
     if cupy.cuda.runtime.is_hip:
         if self._check_dgmm_incx_minus_one_hip_skip_condition():
             pytest.xfail('HIP dgmm may have a bug')
     self._setup(dtype)
     if self.side == 'L':
         ref = cupy.diag(self.x[::-1]) @ self.a
     elif self.side == 'R':
         ref = self.a @ cupy.diag(self.x[::-1])
     c = cublas.dgmm(self.side, self.a, self.x, incx=-1)
     cupy.testing.assert_allclose(c, ref, rtol=self.tol, atol=self.tol)
Exemplo n.º 16
0
def itkrm(data,K,S,maxitr,startD=np.array([1])):
    M, N = data.shape
    if startD.all()==1:
        D_init = np.random.randn(M, K)
    else:
        D_init = startD
        
    #Algorithm    
    GPU_D_old = cp.asarray(D_init)
       
    GPU_Y = cp.asarray(data)
    
    GPU_M = int(cp.asarray(M))
    
    GPU_N = int(cp.asarray(N))
    
    GPU_S = int(cp.asarray(S))
    
    GPU_maxitr = int(cp.asarray(maxitr))
    
    GPU_I_D = cp.zeros((S,N),dtype=cp.int32)
   
    for i in range(GPU_maxitr):
        start_time = N_timer.cont_timer(0,0)
        N_timer.Timer(i,maxitr)
        for n in range(GPU_N):
            GPU_I_D[:,n] = max_atoms(GPU_D_old,GPU_Y[:,n],GPU_S)

        GPU_D_new = cp.zeros((M,K))
        
        GPU_DtD = GPU_D_old.T @ GPU_D_old

        for n in range(GPU_N):
            GPU_DtY = GPU_D_old[:,GPU_I_D[:,n]].T @ GPU_Y[:,n]
            GPU_matproj = cp.repeat((GPU_D_old[:,GPU_I_D[:,n]] @ cp.linalg.inv(GPU_DtD[GPU_I_D[:,n,None], GPU_I_D[:,n]]) @ GPU_DtY)[:,None],GPU_S,axis=1)
            GPU_vecproj = GPU_D_old[:,GPU_I_D[:,n]] @ cp.diag(cp.diag( GPU_DtD[GPU_I_D[:,n,None], GPU_I_D[:,n]] )**-1*( GPU_DtY ))
            GPU_signer = cp.sign( GPU_DtY )
            GPU_D_new[:,GPU_I_D[:,n]] = GPU_D_new[:,GPU_I_D[:,n]] + (cp.repeat(GPU_Y[:,n,None], S, axis=1) - GPU_matproj + GPU_vecproj)*GPU_signer
            
            


        GPU_scale = cp.sum(GPU_D_new*GPU_D_new, axis=0)
        GPU_iszero = cp.where(GPU_scale < 0.00001)[0]
#        GPU_D_new[:,GPU_iszero] = np.random.randn(GPU_M, len(GPU_iszero))  # generate random with GPU
        GPU_D_new[:,GPU_iszero] = cp.asarray(np.random.randn(M, len(GPU_iszero)))  # generate random with CPU
    #end hugget
        GPU_D_new = normalize_mat_col(GPU_D_new)
        GPU_D_old = 1*GPU_D_new
    return cp.asnumpy(GPU_D_old)
Exemplo n.º 17
0
def triageTemplates2(params, iW, C2C, W, U, dWU, mu, nsp, ndrop):

    # This function checks if some templates should be dropped
    # either because they are very similar to another template,
    # or because they are not catching any spikes, (low mean firing rate).
    # Takes as inputs almost all the information that determines templates, and
    # outputs the same variables back after removing some clusters.

    # this is the firing rate threshold
    m0 = params.minFR * params.NT / params.fs
    idrop = nsp < m0  # drop any templates with firing rate below this

    # remove those templates everywhere
    W = W[:, ~idrop, :]
    U = U[:, ~idrop, :]
    dWU = dWU[:, :, ~idrop]
    mu = mu[~idrop]
    nsp = nsp[~idrop]
    # keep track of how many templates have been removed this way
    ndrop[0] = .9 * ndrop[0] + .1 * idrop.sum()

    # compute pairwise correlations between templates
    cc = getMeWtW2(W, U, None)
    cc = cc - cp.diag(cp.diag(cc))  # exclude the diagonal

    sd = sqrt(10)  # this is hard-coded here

    # compute a score for the separation of the means
    r0 = 4 * sd / cp.abs(mu[:, np.newaxis] - mu[np.newaxis, :])
    # determine which template has more spikes (that one survives)
    rdir = (nsp[:, np.newaxis] - nsp[np.newaxis, :]) < 0
    # for each pair of template, score their similarity by their template correlation,
    # and amplitude separation
    ipair = (cc > 0.9) & (r0 > 1) & rdir
    # for each template, find its most similar other template
    amax = cp.max(ipair, axis=1)
    # if this score is 1, then all the criteria have bene met for dropping this template
    idrop = amax > 0

    # remove these templates everywhere like before
    W = W[:, ~idrop, :]
    U = U[:, ~idrop, :]
    dWU = dWU[:, :, ~idrop]
    mu = mu[~idrop]
    nsp = nsp[~idrop]
    # keep track of how many templates have been removed this way
    ndrop[1] = .9 * ndrop[1] + .1 * idrop.sum()

    return W, U, dWU, mu, nsp, ndrop
Exemplo n.º 18
0
def svdecon(X, nPC0=None):
    """
    Input:
    X : m x n matrix

    Output:
    X = U*S*V'

    Description:

    Does equivalent to svd(X,'econ') but faster

        Vipin Vijayan (2014)

    """

    m, n = X.shape

    nPC = nPC0 or min(m, n)

    if m <= n:
        C = cp.dot(X, X.T)
        D, U = cp.linalg.eigh(C, 'U')

        ix = cp.argsort(np.abs(D))[::-1]
        d = D[ix]
        U = U[:, ix]
        d = d[:nPC]
        U = U[:, :nPC]

        V = cp.dot(X.T, U)
        s = cp.sqrt(d)
        V = V / s.T
        S = cp.diag(s)
    else:
        C = cp.dot(X.T, X)
        D, V = cp.linalg.eigh(C)

        ix = cp.argsort(cp.abs(D))[::-1]
        d = D[ix]
        V = V[:, ix]

        # convert evecs from X'*X to X*X'. the evals are the same.
        U = cp.dot(X, V)
        s = cp.sqrt(d)
        U = U / s.T
        S = cp.diag(s)

    return U, S, V
Exemplo n.º 19
0
def diagflat(v, k=0):
    """Creates a diagonal array from the flattened input.

    Args:
        v (array-like): Array or array-like object.
        k (int): Index of diagonals. See :func:`cupy.diag` for detail.

    Returns:
        cupy.ndarray: A 2-D diagonal array with the diagonal copied from ``v``.

    """
    if isinstance(v, cupy.ndarray):
        return cupy.diag(v.ravel(), k)
    else:
        return cupy.diag(numpy.ndarray(v).ravel(), k)
Exemplo n.º 20
0
    def decompose(
            self,
            lhs: List[int],
            rhs: List[int],
            mergeV: bool = True,
            cutoff: float = 1e-12,
            maxdim: int = 2147483648
    ) -> Tuple["Tensor", "Tensor", xp.array, int]:
        lhs_size = reduce(lambda x, y: x * y,
                          [self._indices[i].size for i in lhs])
        rhs_size = reduce(lambda x, y: x * y,
                          [self._indices[i].size for i in rhs])
        self.transpose(lhs + rhs)
        u, s, v = xp.linalg.svd(self._data.reshape([lhs_size, rhs_size]),
                                full_matrices=False,
                                compute_uv=True)

        s_norm = xp.linalg.norm(s)
        s_cutoff = (1 - cutoff) * s_norm * s_norm
        s_squared_cumsum = xp.cumsum(xp.power(s, 2))

        # dim = 0
        # for i in range(s.size):
        #     dim += 1
        #     if s_squared_cumsum[i] >= s_cutoff or (dim + 1) > maxdim:
        #         break
        dim = int(xp.searchsorted(s_squared_cumsum[:maxdim], s_cutoff)) + 1
        dim = min(dim, s.size, maxdim)

        u = u[:, :dim]
        s = xp.clip(s[:dim] * s_norm / xp.sqrt(s_squared_cumsum[dim - 1]),
                    a_min=1e-32,
                    a_max=None)
        v = v[:dim, :]

        if mergeV:
            v = xp.diag(s) @ v
        else:
            u = u @ xp.diag(s)

        a = Index(dim)
        lhs_indices = self._indices[:len(lhs)] + [a]
        rhs_indices = [a] + self._indices[len(lhs):]
        lhs_tensor = Tensor(lhs_indices,
                            u.reshape([idx.size for idx in lhs_indices]))
        rhs_tensor = Tensor(rhs_indices,
                            v.reshape([idx.size for idx in rhs_indices]))
        return lhs_tensor, rhs_tensor, s, dim
Exemplo n.º 21
0
def getRandomHermitianMatrix(M):
    ret = xp.diag(0j + randn(M))
    for y in range(0, M - 1):
        for x in range(y + 1, M):
            ret[y, x] = randn_c()
            ret[x, y] = xp.conj(ret[y, x])
    return ret
Exemplo n.º 22
0
 def setUp(self):
     self.dtype = numpy.dtype(self.dtype)
     if self.dtype.char in 'fF':
         self.r_dtype = numpy.float32
     else:
         self.r_dtype = numpy.float64
     n = self.n
     nrhs = 1 if self.nrhs is None else self.nrhs
     # Diagonally dominant matrix is used as it is stable
     alpha = 2.0 / n
     a = self._make_matrix((n, n), alpha, -alpha / 2)
     diag = cupy.diag(cupy.ones((n, ), dtype=self.r_dtype))
     a[diag > 0] = 0
     a += diag
     x = self._make_matrix((n, nrhs), 0.2, 0.9)
     b = cupy.matmul(a, x)
     b_shape = [n]
     if self.nrhs is not None:
         b_shape.append(nrhs)
     self.a = a
     self.b = b.reshape(b_shape)
     self.x_ref = x.reshape(b_shape)
     if self.r_dtype == numpy.float32:
         self.tol = self._tol['f']
     elif self.r_dtype == numpy.float64:
         self.tol = self._tol['d']
Exemplo n.º 23
0
def lanczos(op: LinearOp,
            x: Tensor,
            krylov_size: int,
            num_restarts: int,
            smallest: bool = True) -> Tuple[float, Tensor]:
    v_next = x._data.copy()
    beta = xp.zeros(krylov_size + 1)
    alpha = xp.zeros(krylov_size)
    for _ in range(num_restarts):
        beta[0] = 0.0
        v_prev = xp.zeros(x._data.shape)
        v_next /= xp.linalg.norm(v_next)
        V = xp.zeros([x.size, krylov_size])
        for i in range(0, krylov_size):
            w = op(v_next)
            alpha[i] = xp.dot(w.reshape(x.size), v_next.reshape(x.size))
            w -= (alpha[i] * v_next + beta[i] * v_prev)
            beta[i + 1] = xp.linalg.norm(w)
            v_prev = v_next.copy()
            v_next = w / beta[i + 1]
            V[:, i] = v_prev.reshape(x.size)

        tridiag = xp.diag(alpha)
        for i in range(0, krylov_size - 1):
            tridiag[i + 1, i] = beta[i + 1]
        d, v = xp.linalg.eigh(tridiag, UPLO="L")

        if smallest:
            ev = d[0]
            v_next = (V @ v[:, 0]).reshape(x._data.shape)
        else:
            ev = d[-1]
            v_next = (V @ v[:, -1]).reshape(x._data.shape)
    x._data = v_next
    return ev, x
Exemplo n.º 24
0
 def _make_matrix(self, dtype):
     if not cusparse.check_availability('csrilu02'):
         pytest.skip('csrilu02 is not available')
     a = testing.shaped_random(
         (self.n, self.n), cupy, dtype=dtype, scale=0.9) + 0.1
     a = a + cupy.diag(cupy.ones((self.n, ), dtype=dtype.char.lower()))
     return a
Exemplo n.º 25
0
 def admittanceMatrixD(self):
     all_el_nodes_coords = self.pts[:(self.ne * self.n_per_el)].reshape(
         (self.ne, self.n_per_el, 2))
     lengths = cp.linalg.norm((all_el_nodes_coords[:, 0] -
                               all_el_nodes_coords[:, (self.n_per_el - 1)]),
                              axis=1)
     admittanceMatrixD = cp.diag(lengths / self.z)
     return admittanceMatrixD
Exemplo n.º 26
0
def _eigsh_solve_ritz(alpha, beta, beta_k, k, which):
    t = cupy.diag(alpha)
    t = t + cupy.diag(beta[:-1], k=1)
    t = t + cupy.diag(beta[:-1], k=-1)
    if beta_k is not None:
        t[k, :k] = beta_k
        t[:k, k] = beta_k
    w, s = cupy.linalg.eigh(t)

    # Pick-up k ritz-values and ritz-vectors
    if which == 'LA':
        idx = cupy.argsort(w)
    elif which == 'LM':
        idx = cupy.argsort(cupy.absolute(w))
    wk = w[idx[-k:]]
    sk = s[:, idx[-k:]]
    return wk, sk
Exemplo n.º 27
0
def _slogdet_one(a):
    util._assert_rank2(a)
    util._assert_nd_squareness(a)
    dtype = a.dtype

    handle = device.get_cusolver_handle()
    m = len(a)
    ipiv = cupy.empty(m, 'i')
    info = cupy.empty((), 'i')

    # Need to make a copy because getrf works inplace
    a_copy = a.copy(order='F')

    if dtype == 'f':
        getrf_bufferSize = cusolver.sgetrf_bufferSize
        getrf = cusolver.sgetrf
    #<-- MODIFIED
    elif dtype == 'd':
        getrf_bufferSize = cusolver.dgetrf_bufferSize
        getrf = cusolver.dgetrf
    elif dtype == 'F':
        getrf_bufferSize = cusolver.cgetrf_bufferSize
        getrf = cusolver.cgetrf
    else:
        getrf_bufferSize = cusolver.zgetrf_bufferSize
        getrf = cusolver.zgetrf
    #<-- MODIFIED

    buffersize = getrf_bufferSize(handle, m, m, a_copy.data.ptr, m)
    workspace = cupy.empty(buffersize, dtype=dtype)
    getrf(handle, m, m, a_copy.data.ptr, m, workspace.data.ptr, ipiv.data.ptr,
          info.data.ptr)

    if info[()] == 0:
        diag = cupy.diag(a_copy)
        # ipiv is 1-origin
        non_zero = (cupy.count_nonzero(ipiv != cupy.arange(1, m + 1)) +
                    cupy.count_nonzero(diag < 0))
        # Note: sign == -1 ** (non_zero % 2)
        sign = (non_zero % 2) * -2 + 1
        logdet = cupy.log(abs(diag)).sum()
    else:
        sign = cupy.array(0.0, dtype=dtype)
        #ORIGINAL
        # logdet = cupy.array(float('-inf'), dtype)

        #<-- MODIFIED
        if dtype in ['f', 'd']:
            logdet = cupy.array(float('-inf'), dtype)
        elif dtype == 'F':
            logdet = cupy.array(float('-inf'), cupy.float32)
        else:
            logdet = cupy.array(float('-inf'), cupy.float64)
        #<-- MODIFIED

    return sign, logdet
Exemplo n.º 28
0
 def _initialize_nets(self):
     self.weights = cp.random.normal(
         size=(self.pop_size, self.total, self.total),
         dtype='single') * cp.tile(
             cp.triu(cp.ones(shape=(self.total, self.total), dtype='bool_'),
                     1), (self.pop_size, 1, 1)) * (cp.random.uniform(
                         size=(self.pop_size, self.total, self.total),
                         dtype='single') < .5)
     self.weights[:, :, self.inputs:] *= cp.sqrt(4 / cp.minimum(
         cp.arange(self.inputs, self.total), self.inputs + self.hidden))
     self.weights[:, :self.inputs, :self.inputs] = 0
     self.weights[:, -self.outputs:, -self.outputs:] = cp.tile(
         cp.diag(
             cp.diag(
                 cp.ones(shape=(self.outputs, self.outputs),
                         dtype='bool_'))), (self.pop_size, 1, 1))
     self.biases = cp.random.normal(
         size=(self.pop_size, 1, self.hidden + self.outputs),
         dtype='single') * .5
Exemplo n.º 29
0
 def __estimate_one_step(self, threshold: int):
     """
     Estimate the solution having a given threshold value and keeping only the singular values above these threshold.
     Values smaller than numerical zero are always discarded.
     :param threshold: Value specifying the smallest singular value (sorted in descending order) to keep. All singular
     values smaller than given are discarded.
     :type threshold: int
     """
     self.current = cp.matmul(self.__V.T[:, :threshold],
                              cp.matmul(cp.diag(cp.divide(1, self.__D[:threshold])),
                                        cp.matmul(self.__U[:, :threshold].T, self.q_estimator)))
Exemplo n.º 30
0
 def test_csrilu02(self, dtype):
     dtype = numpy.dtype(dtype)
     a_ref = self._make_matrix(dtype)
     a = sparse.csr_matrix(a_ref)
     cusparse.csrilu02(a, level_info=self.level_info)
     a = a.todense()
     al = cupy.tril(a, k=-1)
     al = al + cupy.diag(cupy.ones((self.n, ), dtype=dtype.char.lower()))
     au = cupy.triu(a)
     a = al @ au
     tol = self._tol[dtype.char.lower()]
     cupy.testing.assert_allclose(a, a_ref, atol=tol, rtol=tol)