Exemplo n.º 1
0
def _calc_oa_lens(s1, s2):
    # See scipy's documentation in scipy.signal.signaltools

    # Set up the arguments for the conventional FFT approach.
    fallback = (s1+s2-1, None, s1, s2)

    # Use conventional FFT convolve if sizes are same.
    if s1 == s2 or s1 == 1 or s2 == 1:
        return fallback

    # Make s1 the larger size
    swapped = s2 > s1
    if swapped:
        s1, s2 = s2, s1

    # There cannot be a useful block size if s2 is more than half of s1.
    if s2 >= s1//2:
        return fallback

    # Compute the optimal block size from the overlap
    overlap = s2-1
    block_size = fft.next_fast_len(_optimal_oa_block_size(overlap))

    # Use conventional FFT convolve if there is only going to be one block.
    if block_size >= s1:
        return fallback

    # Get step size for each of the blocks
    in1_step, in2_step = block_size-s2+1, s2
    if swapped:
        in1_step, in2_step = in2_step, in1_step

    return block_size, overlap, in1_step, in2_step
Exemplo n.º 2
0
def _freq_domain_conv(in1, in2, axes, shape, calc_fast_len=False):
    # See scipy's documentation in scipy.signal.signaltools
    real = (in1.dtype.kind != 'c' and in2.dtype.kind != 'c')
    fshape = ([fft.next_fast_len(shape[a], real) for a in axes]
              if calc_fast_len else shape)
    fftn, ifftn = (fft.rfftn, fft.irfftn) if real else (fft.fftn, fft.ifftn)

    # Perform the convolution
    sp1 = fftn(in1, fshape, axes=axes)
    sp2 = fftn(in2, fshape, axes=axes)
    out = ifftn(sp1 * sp2, fshape, axes=axes)

    return out[tuple(slice(x) for x in shape)] if calc_fast_len else out
Exemplo n.º 3
0
 def test_next_fast_len(self):
     for in_value in range(2000):
         out_value = cp_fft.next_fast_len(in_value)
         assert self._is_fast_len(out_value)
         for i in range(in_value, out_value):
             assert not self._is_fast_len(i)