Exemplo n.º 1
0
def main():

    # prepare logger and its directory
    log_file_location = output['folder'] + "/log/"
    try:
        os.makedirs(log_file_location)
    except:
        cmd = 'rm -r ' + log_file_location + "/*"
        os.system(cmd)
        pass
    vos.initialize_logging(log_file_location)

    # time object
    modelTime = ModelTime()  # timeStep info: year, month, day, doy, hour, etc
    modelTime.getStartEndTimeSteps(startDate, endDate, nrOfTimeSteps)

    calculationModel = CalcFramework(cloneMapFileName,\
                                     pcraster_files, \
                                     modelTime, \
                                     output, inputEPSG, outputEPSG, resample_method)

    dynamic_framework = DynamicFramework(calculationModel,
                                         modelTime.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
Exemplo n.º 2
0
    def initialize_config(self, fileName):
        logger.info("PCRGlobWB: initialize_config")

        try:

            self.configuration = Configuration(fileName,
                                               relative_ini_meteo_paths=True)
            pcr.setclone(self.configuration.cloneMap)

            # set start and end time based on configuration
            self.model_time = ModelTime()
            self.model_time.getStartEndTimeSteps(
                self.configuration.globalOptions['startTime'],
                self.configuration.globalOptions['endTime'])

            self.model_time.update(0)

            self.shape = self.calculate_shape()

            logger.info("Shape of maps is %s", str(self.shape))

            self.model = None

        except:
            import traceback
            traceback.print_exc()
            raise
Exemplo n.º 3
0
    def initialize(self, config_file_location=None):
        """
        Initializes the model: read config file, load variables, get timestep information, etc.
        """
        self.configuration = Configuration(config_file_location)

        self.initial_state = None

        self.currTimeStep = ModelTime(
        )  # timeStep info: year, month, day, doy, hour, etc

        self.currTimeStep.getStartEndTimeSteps(
            self.configuration.globalOptions['startTime'],
            self.configuration.globalOptions['endTime'])

        self.deterministic_runner = DeterministicRunner(
            self.configuration, self.currTimeStep, self.initial_state)

        self.dynamic_framework = DynamicFramework(self.deterministic_runner, 1)
        self.dynamic_framework.setQuiet(True)
        self.dynamic_framework._runInitial()
        self.dynamic_framework._runResume()

        # set timestep (to allow updates on a per-timestep-basis)
        self.currenttimestep = 0

        logger.info('Model initialized. Spin-up might be required.')
def main():

    # get the full path of configuration/ini file given in the system argument
    iniFileName = os.path.abspath(sys.argv[1])

    # debug option
    debug_mode = False
    if len(sys.argv) > 2:
        if sys.argv[2] == "debug": debug_mode = True

    # object to handle configuration/ini file
    configuration = Configuration(iniFileName = iniFileName, \
                                  debug_mode = debug_mode)

    # timeStep info: year, month, day, doy, hour, etc
    currTimeStep = ModelTime()

    # Running the deterministic_runner
    currTimeStep.getStartEndTimeSteps(configuration.globalOptions['startTime'],
                                      configuration.globalOptions['endTime'])
    logger.info('Model run starts.')
    deterministic_runner = DeterministicRunner(configuration, currTimeStep)

    dynamic_framework = DynamicFramework(deterministic_runner,
                                         currTimeStep.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
Exemplo n.º 5
0
    def spinup(self):
        """
        Spin-up the model. This is required to obtain realistic starting conditions for the model run.
        It runs on a yearly basis until the required convergence or max. allowed spin-up runs is reached.
        """
        spin_up = SpinUp(self.configuration)  # object for spin_up

        self.currTimeStep = ModelTime(
        )  # timeStep info: year, month, day, doy, hour, etc

        # spin-up
        noSpinUps = int(self.configuration.globalOptions['maxSpinUpsInYears'])
        if noSpinUps > 0:

            logger.info('Spin-Up #Total Years: ' + str(noSpinUps))

            spinUpRun = 0
            has_converged = False
            while spinUpRun < noSpinUps and has_converged == False:
                spinUpRun += 1
                self.currTimeStep.getStartEndTimeStepsForSpinUp(
                    self.configuration.globalOptions['startTime'], spinUpRun,
                    noSpinUps)
                logger.info('Spin-Up Run No. ' + str(spinUpRun))
                deterministic_runner = DeterministicRunner(
                    self.configuration, self.currTimeStep, self.initial_state)

                all_state_begin = deterministic_runner.model.getAllState()

                self.dynamic_framework = DynamicFramework(
                    deterministic_runner, self.currTimeStep.nrOfTimeSteps)
                self.dynamic_framework.setQuiet(True)
                self.dynamic_framework.run()

                all_state_end = deterministic_runner.model.getAllState()

                has_converged = spin_up.checkConvergence(
                    all_state_begin, all_state_end, spinUpRun,
                    deterministic_runner.model.routing.cellArea)

                self.initial_state = deterministic_runner.model.getState()

                # setting model ready after spin-up
                self.currTimeStep.getStartEndTimeSteps(
                    self.configuration.globalOptions['startTime'],
                    self.configuration.globalOptions['endTime'])

                self.deterministic_runner = DeterministicRunner(
                    self.configuration, self.currTimeStep, self.initial_state)

        logger.info(
            'End of spin-up. Model is ready for transient simulation run.')
Exemplo n.º 6
0
def main():
    
    # time object
    modelTime = ModelTime() # timeStep info: year, month, day, doy, hour, etc
    modelTime.getStartEndTimeSteps(startDate,endDate,nrOfTimeSteps)
    
    calculationModel = CalcFramework(cloneMapFileName,\
                                     pcraster_files, \
                                     output, \
                                     modelTime)
    dynamic_framework = DynamicFramework(calculationModel,modelTime.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
Exemplo n.º 7
0
def main():

    startDate = "2003-01-01"  #YYYY-MM-DD
    endDate = "2010-12-31"  #YYYY-MM-DD

    # time object
    modelTime = ModelTime()  # timeStep info: year, month, day, doy, hour, etc
    modelTime.getStartEndTimeSteps(startDate, endDate)
    #
    # upscaling the PCR-GLOBWB results from five minute to one degree:
    upscalingModel = UpscalingFramework(input_files,\
                                        output_files,\
                                        modelTime,\
                                        tmpDir)
    dynamic_framework = DynamicFramework(upscalingModel,\
                                         modelTime.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()

    # reset time object
    modelTime = ModelTime()  # timeStep info: year, month, day, doy, hour, etc
    modelTime.getStartEndTimeSteps(startDate, endDate)
    #
    # evaluate model results to grace product
    graceEvaluation = GraceEvaluation(input_files,\
                                      output_files,\
                                      modelTime,\
                                      tmpDir)
    dynamic_framework = DynamicFramework(graceEvaluation,\
                                         modelTime.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
Exemplo n.º 8
0
def main():

    # time object
    modelTime = ModelTime()  # timeStep info: year, month, day, doy, hour, etc
    modelTime.getStartEndTimeSteps(startDate, endDate, nrOfTimeSteps)

    calculationModel = CalcFramework(cloneMapFileName,\
                                     pcraster_files, \
                                     output, \
                                     modelTime)
    dynamic_framework = DynamicFramework(calculationModel,
                                         modelTime.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
def main():
    
    # time object
    modelTime = ModelTime() # timeStep info: year, month, day, doy, hour, etc
    modelTime.getStartEndTimeSteps(startDate, endDate)
    
    # converting model
    convertModel = ConvertVolumeToHeightFramework(input_netcdf, \
                                                  output_netcdf, \
                                                  modelTime, \
                                                  tmpDir)
    dynamic_framework = DynamicFramework(convertModel, modelTime.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
Exemplo n.º 10
0
def main():

    # time object
    modelTime = ModelTime()  # timeStep info: year, month, day, doy, hour, etc
    modelTime.getStartEndTimeSteps(startDate, endDate)

    # resample netcdf
    resampleModel = ResampleFramework(input_netcdf,\
                                      output_netcdf,\
                                      modelTime,\
                                      tmpDir)
    dynamic_framework = DynamicFramework(resampleModel,
                                         modelTime.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
def main():

    # input_file
    input_file = "/projects/0/dfguu/users/edwin/pcr-globwb-aqueduct/historical/1958-2001_watch/"
    input_file = sys.argv[1]
    
    # netcdf variable name
    input_variable_name = sys.argv[2]
    
    # timeStep info: year, month, day, doy, hour, etc
    start_date = "2015-01-01"
    end_date   = "2015-12-31"
    start_date = sys.argv[3]
    end_date   = sys.argv[4]
    #
    currTimeStep = ModelTime() 
    currTimeStep.getStartEndTimeSteps(start_date, end_date)
    
    # output folder from this calculation
    output_folder = "/scratch-shared/edwin/mekong_basin_temperature/test/"
    output_folder = sys.argv[5]

    # - if exists, cleaning the previous output directory:
    if os.path.isdir(output_folder): shutil.rmtree(output_folder)
    # - making the output folder
    os.makedirs(output_folder)

    # output file, variable name and unit
    output_file   = output_folder + "/" + sys.argv[6]
    variable_name = sys.argv[7]
    variable_unit  = sys.argv[8]

    # logger
    # - making a log directory
    log_file_directory = output_folder + "/" + "log/"
    os.makedirs(log_file_directory)
    # - initialize logging
    vos.initialize_logging(log_file_directory)
    
    
    # Running the deterministic_runner
    logger.info('Starting the calculation.')
    deterministic_runner = DeterministicRunner(currTimeStep, input_file, input_variable_name, output_file, variable_name, variable_unit)
    dynamic_framework = DynamicFramework(deterministic_runner, currTimeStep.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
def main():

    # prepare the output directory
    try:
        os.makedirs(pcraster_output['output_folder'])
    except:
        os.system('rm -r ' + str(pcraster_output['output_folder']))
        pass
    # - making the directory for storing global extent output files
    os.makedirs(pcraster_output['output_folder'] + "/global/")
    # - making the directory for storing regional extent output files
    os.makedirs(pcraster_output['output_folder'] + "/regional/")

    # prepare logger and its directory
    log_file_location = pcraster_output['output_folder'] + "/log/"
    try:
        os.makedirs(log_file_location)
    except:
        pass
    vos.initialize_logging(log_file_location)

    # prepare a temporary folder
    tmp_file_location = pcraster_output['output_folder'] + "/tmp/"
    try:
        os.makedirs(tmp_file_location)
    except:
        pass

    # time object
    modelTime = ModelTime()  # timeStep info: year, month, day, doy, hour, etc
    modelTime.getStartEndTimeSteps(startDate, endDate)

    calculationModel = CalcFramework(globeCloneMapFileName, localCloneMapFileName, \
                                     netcdf_input, \
                                     pcraster_output, \
                                     modelTime, \
                                     inputEPSG, outputEPSG, resample_method)

    dynamic_framework = DynamicFramework(calculationModel,
                                         modelTime.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
Exemplo n.º 13
0
def main():
    
    # prepare logger and its directory
    log_file_location = output['folder'] + "/log/"
    try:
        os.makedirs(log_file_location)
    except:
        pass
    vos.initialize_logging(log_file_location)
    
    # time object
    modelTime = ModelTime() # timeStep info: year, month, day, doy, hour, etc
    modelTime.getStartEndTimeSteps(startDate, endDate)
    
    calculationModel = CalcFramework(cloneMapFileName,\
                                     input_files, \
                                     modelTime, \
                                     output)

    dynamic_framework = DynamicFramework(calculationModel, modelTime.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
Exemplo n.º 14
0
def main():
    
    # - prepare the output folder
    if os.path.exists(output_folder): shutil.rmtree(output_folder)
    os.makedirs(output_folder)    

    # prepare logger and its directory
    log_file_location = output_folder + "/log/"
    os.makedirs(log_file_location)
    vos.initialize_logging(log_file_location)
    
    # time object
    modelTime = ModelTime() # timeStep info: year, month, day, doy, hour, etc
    modelTime.getStartEndTimeSteps(startDate, endDate)
    
    #~ print modelTime.nrOfTimeSteps
    
    # calculation model/framework
    calculationModel = AreaOperationNetcdfToPCRasterTSS(netcdf_input_file = netcdf_input_file, \
                                                        areaMapFileName      = areaMapFileName, \
                                                        areaPointMapFileName = areaPointMapFileName, \
                                                        netcdf_input_clone_map_file = netcdf_input_clone_map_file, \
                                                        output_folder = output_folder, \
                                                        unit_conversion_factor = unit_conversion_factor, \
                                                        unit_conversion_offset = unit_conversion_offset, \
                                                        modelTime = modelTime, \
                                                        inputProjection  = inputProjection, \
                                                        outputProjection = outputProjection, \
                                                        resample_method  = resample_method, \
                                                        tss_daily_output_file = tss_daily_output_file, \
                                                        tss_10day_output_file = tss_10day_output_file, \
                                                        report_10day_pcr_files = True
                                                        )
    number_of_time_steps = modelTime.nrOfTimeSteps
    #~ number_of_time_steps = 100
    dynamic_framework = DynamicFramework(calculationModel, number_of_time_steps)
    dynamic_framework.setQuiet(True)
    # - start the calculation
    dynamic_framework.run()
Exemplo n.º 15
0
def main():

    # the output folder from this calculation
    output_folder = "/scratch-shared/edwinvua/data_for_diede/netcdf_process/climatology_average/"
    output_folder = sys.argv[1]

    # totat_runoff_input_file
    totat_runoff_input_file = "/scratch-shared/edwinvua/data_for_diede/flow_scenarios/climatology_average_totalRunoff_monthTot_output_1979-2015.nc"
    totat_runoff_input_file = sys.argv[2]
    
    # timeStep info: year, month, day, doy, hour, etc
    start_date = "2015-01-01"
    end_date   = "2015-12-31"
    start_date = sys.argv[3]
    end_date   = sys.argv[4]
    #
    currTimeStep = ModelTime() 
    currTimeStep.getStartEndTimeSteps(start_date, end_date)
    
    # - if exists, cleaning the previous output directory:
    if os.path.isdir(output_folder): shutil.rmtree(output_folder)
    # - making the output folder
    os.makedirs(output_folder)

    # logger
    # - making a log directory
    log_file_directory = output_folder + "/" + "log/"
    os.makedirs(log_file_directory)
    # - initialize logging
    vos.initialize_logging(log_file_directory)
    
    
    # Running the deterministic_runner
    logger.info('Starting the calculation.')
    deterministic_runner = DeterministicRunner(currTimeStep, output_folder, totat_runoff_input_file)
    dynamic_framework = DynamicFramework(deterministic_runner,currTimeStep.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
def main():

    # print disclaimer
    disclaimer.print_disclaimer()

    # get the full path of configuration/ini file given in the system argument
    iniFileName = os.path.abspath(sys.argv[1])

    # debug option
    debug_mode = False
    if len(sys.argv) > 2:
        if sys.argv[2] == "debug" or sys.argv[2] == "debug_parallel":
            debug_mode = True

    # options to perform steady state calculation
    steady_state_only = False
    if len(sys.argv) > 3:
        if sys.argv[3] == "steady-state-only": steady_state_only = True

    # object to handle configuration/ini file
    configuration = Configuration(iniFileName = iniFileName, \
                                  debug_mode = debug_mode, \
                                  steady_state_only = steady_state_only)

    # timeStep info: year, month, day, doy, hour, etc
    currTimeStep = ModelTime()

    # Running the deterministic_runner
    currTimeStep.getStartEndTimeSteps(configuration.globalOptions['startTime'],
                                      configuration.globalOptions['endTime'])
    logger.info('Model run starts.')
    deterministic_runner = DeterministicRunner(configuration, currTimeStep)

    dynamic_framework = DynamicFramework(deterministic_runner,
                                         currTimeStep.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
Exemplo n.º 17
0
def main():
    
    # prepare logger and its directory
    log_file_location = output['folder']+"/log/"
    try:
        os.makedirs(log_file_location)
    except:
        cmd = 'rm -r '+log_file_location+"/*"
        os.system(cmd)
        pass
    vos.initialize_logging(log_file_location)
    
    # time object
    modelTime = ModelTime() # timeStep info: year, month, day, doy, hour, etc
    modelTime.getStartEndTimeSteps(startDate,endDate,nrOfTimeSteps)
    
    calculationModel = CalcFramework(cloneMapFileName,\
                                     pcraster_files, \
                                     modelTime, \
                                     output, inputEPSG, outputEPSG, resample_method)

    dynamic_framework = DynamicFramework(calculationModel,modelTime.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
Exemplo n.º 18
0
def main():

    initial_state = None
    configuration = Configuration()

    spin_up = SpinUp(configuration)  # object for spin_up

    currTimeStep = ModelTime(
    )  # timeStep info: year, month, day, doy, hour, etc

    # spinningUp
    noSpinUps = int(configuration.globalOptions['maxSpinUpsInYears'])
    if noSpinUps > 0:

        logger.info('Spin-Up #Total Years: ' + str(noSpinUps))

        spinUpRun = 0
        has_converged = False
        while spinUpRun < noSpinUps and has_converged == False:
            spinUpRun += 1
            currTimeStep.getStartEndTimeStepsForSpinUp(
                configuration.globalOptions['startTime'], spinUpRun, noSpinUps)
            logger.info('Spin-Up Run No. ' + str(spinUpRun))
            deterministic_runner = DeterministicRunner(configuration,
                                                       currTimeStep,
                                                       initial_state)

            all_state_begin = deterministic_runner.model.getAllState()

            dynamic_framework = DynamicFramework(deterministic_runner,
                                                 currTimeStep.nrOfTimeSteps)
            dynamic_framework.setQuiet(True)
            dynamic_framework.run()

            all_state_end = deterministic_runner.model.getAllState()

            has_converged = spin_up.checkConvergence(
                all_state_begin, all_state_end, spinUpRun,
                deterministic_runner.model.routing.cellArea)

            initial_state = deterministic_runner.model.getState()
    #
    # Running the deterministic_runner (excluding DA scheme)
    currTimeStep.getStartEndTimeSteps(configuration.globalOptions['startTime'],
                                      configuration.globalOptions['endTime'])

    logger.info('Transient simulation run started.')
    deterministic_runner = DeterministicRunner(configuration, currTimeStep,
                                               initial_state)

    dynamic_framework = DynamicFramework(deterministic_runner,
                                         currTimeStep.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
Exemplo n.º 19
0
def main():
    # get the full path of configuration/ini file given in the system argument
    iniFileName = os.path.abspath(sys.argv[1])

    # debug option
    debug_mode = False
    if len(sys.argv) > 2:
        if sys.argv[2] == "debug": debug_mode = True

    # object to handle configuration/ini file
    configuration = Configuration(iniFileName = iniFileName, \
                                  debug_mode = debug_mode)

    # timeStep info: year, month, day, doy, hour, etc
    currTimeStep = ModelTime()

    # object for spin_up
    spin_up = SpinUp(configuration)

    # spinningUp
    noSpinUps = int(configuration.globalOptions['maxSpinUpsInYears'])
    initial_state = None
    if noSpinUps > 0:

        logger.info('Spin-Up #Total Years: ' + str(noSpinUps))

        spinUpRun = 0
        has_converged = False
        while spinUpRun < noSpinUps and has_converged == False:
            spinUpRun += 1
            currTimeStep.getStartEndTimeStepsForSpinUp(
                configuration.globalOptions['startTime'], spinUpRun, noSpinUps)
            logger.info('Spin-Up Run No. ' + str(spinUpRun))
            deterministic_runner = DeterministicRunner(configuration,
                                                       currTimeStep,
                                                       initial_state)

            all_state_begin = deterministic_runner.model.getAllState()

            dynamic_framework = DynamicFramework(deterministic_runner,
                                                 currTimeStep.nrOfTimeSteps)
            dynamic_framework.setQuiet(True)
            dynamic_framework.run()

            all_state_end = deterministic_runner.model.getAllState()

            has_converged = spin_up.checkConvergence(
                all_state_begin, all_state_end, spinUpRun,
                deterministic_runner.model.routing.cellArea)

            initial_state = deterministic_runner.model.getState()
    #
    # Running the deterministic_runner (excluding DA scheme)
    currTimeStep.getStartEndTimeSteps(configuration.globalOptions['startTime'],
                                      configuration.globalOptions['endTime'])

    logger.info('Transient simulation run started.')
    deterministic_runner = DeterministicRunner(configuration, currTimeStep,
                                               initial_state)

    dynamic_framework = DynamicFramework(deterministic_runner,
                                         currTimeStep.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
def main():

    # print disclaimer
    disclaimer.print_disclaimer()

    # get the full path of configuration/ini file given in the system argument
    iniFileName = os.path.abspath(sys.argv[1])

    # debug option
    debug_mode = False
    if len(sys.argv) > 2:
        if sys.argv[2] == "debug": debug_mode = True

    # object to handle configuration/ini file
    configuration = Configuration(iniFileName = iniFileName, \
                                  debug_mode = debug_mode)

    # timeStep info: year, month, day, doy, hour, etc
    currTimeStep = ModelTime()

    # object for spin_up
    spin_up = SpinUp(configuration)

    # spinningUp
    noSpinUps = int(configuration.globalOptions['maxSpinUpsInYears'])
    initial_state = None
    if noSpinUps > 0:

        logger.info('Spin-Up #Total Years: ' + str(noSpinUps))

        spinUpRun = 0
        has_converged = False
        while spinUpRun < noSpinUps and has_converged == False:
            spinUpRun += 1
            currTimeStep.getStartEndTimeStepsForSpinUp(
                configuration.globalOptions['startTime'], spinUpRun, noSpinUps)
            logger.info('Spin-Up Run No. ' + str(spinUpRun))
            deterministic_runner = DeterministicRunner(configuration,
                                                       currTimeStep,
                                                       initial_state)

            all_state_begin = deterministic_runner.model.getAllState()

            dynamic_framework = DynamicFramework(deterministic_runner,
                                                 currTimeStep.nrOfTimeSteps)
            dynamic_framework.setQuiet(True)
            dynamic_framework.run()

            all_state_end = deterministic_runner.model.getAllState()

            has_converged = spin_up.checkConvergence(
                all_state_begin, all_state_end, spinUpRun,
                deterministic_runner.model.routing.cellArea)

            initial_state = deterministic_runner.model.getState()

    # Running the deterministic_runner (excluding DA scheme)
    currTimeStep.getStartEndTimeSteps(configuration.globalOptions['startTime'],
                                      configuration.globalOptions['endTime'])
    logger.info('Transient simulation run started.')
    deterministic_runner = DeterministicRunner(configuration, currTimeStep,
                                               initial_state)
    dynamic_framework = DynamicFramework(deterministic_runner,
                                         currTimeStep.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()

    # for debugging to PCR-GLOBWB version one
    if configuration.debug_to_version_one:

        logger.info('\n\n\n\n\n' + 'Executing PCR-GLOBWB version 1.' +
                    '\n\n\n\n\n')

        # reset modelTime object
        currTimeStep = None
        currTimeStep = ModelTime()
        currTimeStep.getStartEndTimeSteps(
            configuration.globalOptions['startTime'],
            configuration.globalOptions['endTime'])

        # execute PCR-GLOBWB version 1
        # - including comparing model outputs (from versions one and two)
        pcrglobwb_one = oldcalc_framework.PCRGlobWBVersionOne(configuration, \
                                                              currTimeStep, \
                                                              deterministic_runner.model.routing.landmask, \
                                                              deterministic_runner.model.routing.cellArea)
        dynamic_framework = DynamicFramework(pcrglobwb_one,
                                             currTimeStep.nrOfTimeSteps)
        dynamic_framework.setQuiet(True)
        dynamic_framework.run()
Exemplo n.º 21
0
class BmiPCRGlobWB(EBmi):
    #we use the same epoch as pcrglobwb netcdf reporting
    def days_since_industry_epoch(self, modeltime):
        return (modeltime - datetime.date(1901, 1, 1)).days

    def in_modeltime(self, days_since_industry_epoch):
        return (datetime.datetime(1901, 1, 1) +
                datetime.timedelta(days=days_since_industry_epoch)).date()

    def calculate_shape(self):
        # return pcr.pcr2numpy(self.model.landmask, 1e20).shape
        return (pcr.clone().nrRows(), pcr.clone().nrCols())

    #BMI initialize (as a single step)
    def initialize(self, fileName):
        self.initialize_config(fileName)
        self.initialize_model()

    #EBMI initialize (first step of two)
    def initialize_config(self, fileName):
        logger.info("PCRGlobWB: initialize_config")

        try:

            self.configuration = Configuration(fileName,
                                               relative_ini_meteo_paths=True)
            pcr.setclone(self.configuration.cloneMap)

            # set start and end time based on configuration
            self.model_time = ModelTime()
            self.model_time.getStartEndTimeSteps(
                self.configuration.globalOptions['startTime'],
                self.configuration.globalOptions['endTime'])

            self.model_time.update(0)

            self.shape = self.calculate_shape()

            logger.info("Shape of maps is %s", str(self.shape))

            self.model = None

        except:
            import traceback
            traceback.print_exc()
            raise

    #EBMI initialize (second step of two)
    def initialize_model(self):
        if self.model is not None:
            #already initialized
            return

        try:

            logger.info("PCRGlobWB: initialize_model")

            initial_state = None
            self.model = PCRGlobWB(self.configuration, self.model_time,
                                   initial_state)

            self.reporting = Reporting(self.configuration, self.model,
                                       self.model_time)

            logger.info("Shape of maps is %s", str(self.shape))

            logger.info("PCRGlobWB Initialized")

        except:
            import traceback
            traceback.print_exc()
            raise

    def update(self):
        timestep = self.model_time.timeStepPCR

        self.model_time.update(timestep + 1)

        self.model.read_forcings()
        self.model.update(report_water_balance=True)
        self.reporting.report()

    #         #numpy = pcr.pcr2numpy(self.model.landSurface.satDegUpp000005, 1e20)
    #         numpy = pcr.pcr2numpy(self.model.landSurface.satDegUpp000005, np.NaN)
    #         print numpy.shape
    #         print numpy

    def update_until(self, time):
        while self.get_current_time() + 0.001 < time:
            self.update()

    def update_frac(self, time_frac):
        raise NotImplementedError

    def finalize(self):
        pass

    def get_component_name(self):
        return "pcrglobwb"

    def get_input_var_names(self):
        return ["top_layer_soil_saturation"]

    def get_output_var_names(self):
        return ["top_layer_soil_saturation"]

    def get_var_type(self, long_var_name):
        return 'float64'

    def get_var_units(self, long_var_name):
        #TODO: this is not a proper unit
        return '1'

    def get_var_rank(self, long_var_name):
        return 0

    def get_var_size(self, long_var_name):
        return np.prod(self.get_grid_shape(long_var_name))

    def get_var_nbytes(self, long_var_name):
        return self.get_var_size(long_var_name) * np.float64.itemsize

    def get_start_time(self):
        return self.days_since_industry_epoch(self.model_time.startTime)

    def get_current_time(self):
        return self.days_since_industry_epoch(self.model_time.currTime)

    def get_end_time(self):
        return self.days_since_industry_epoch(self.model_time.endTime)

    def get_time_step(self):
        return 1

    def get_time_units(self):
        return "Days since 1901-01-01"

    def get_value(self, long_var_name):
        logger.info("getting value for var %s", long_var_name)

        if (long_var_name == "top_layer_soil_saturation"):

            if self.model is not None and hasattr(self.model.landSurface,
                                                  'satDegUpp000005'):

                #first make all NanS into 0.0 with cover, then cut out the model using the landmask.
                # This should not actually make a difference.
                remasked = pcr.ifthen(
                    self.model.landmask,
                    pcr.cover(self.model.landSurface.satDegUpp000005, 0.0))

                pcr.report(self.model.landSurface.satDegUpp000005, "value.map")
                pcr.report(remasked, "remasked.map")

                value = pcr.pcr2numpy(remasked, np.NaN)

            else:
                logger.info(
                    "model has not run yet, returning empty state for top_layer_soil_saturation"
                )
                value = pcr.pcr2numpy(pcr.scalar(0.0), np.NaN)

            # print "getting var", value
            # sys.stdout.flush()

            doubles = value.astype(np.float64)

            # print "getting var as doubles!!!!", doubles

            result = np.flipud(doubles)

            # print "getting var as doubles flipped!!!!", result
            # sys.stdout.flush()

            return result
        else:
            raise Exception("unknown var name" + long_var_name)

    def get_value_at_indices(self, long_var_name, inds):
        raise NotImplementedError

    #     def get_satDegUpp000005_from_observation(self):
    #
    #         # assumption for observation values
    #         # - this should be replaced by values from the ECV soil moisture value (sattelite data)
    #         # - uncertainty should be included here
    #         # - note that the value should be between 0.0 and 1.0
    #         observed_satDegUpp000005 = pcr.min(1.0,\
    #                                    pcr.max(0.0,\
    #                                    pcr.normal(pcr.boolean(1)) + 1.0))
    #         return observed_satDegUpp000005

    def set_satDegUpp000005(self, src):
        mask = np.isnan(src)
        src[mask] = 1e20
        observed_satDegUpp000005 = pcr.numpy2pcr(pcr.Scalar, src, 1e20)

        pcr.report(observed_satDegUpp000005, "observed.map")

        constrained_satDegUpp000005 = pcr.min(
            1.0, pcr.max(0.0, observed_satDegUpp000005))

        pcr.report(constrained_satDegUpp000005, "constrained.map")

        pcr.report(self.model.landSurface.satDegUpp000005, "origmap.map")
        diffmap = constrained_satDegUpp000005 - self.model.landSurface.satDegUpp000005
        pcr.report(diffmap, "diffmap.map")

        # ratio between observation and model
        ratio_between_observation_and_model = pcr.ifthenelse(self.model.landSurface.satDegUpp000005 > 0.0,
                                                             constrained_satDegUpp000005 / \
                                                             self.model.landSurface.satDegUpp000005, 0.0)

        # updating upper soil states for all lad cover types
        for coverType in self.model.landSurface.coverTypes:
            # correcting upper soil state (storUpp000005)
            self.model.landSurface.landCoverObj[
                coverType].storUpp000005 *= ratio_between_observation_and_model

            # if model value = 0.0, storUpp000005 is calculated based on storage capacity (model parameter) and observed saturation degree
            self.model.landSurface.landCoverObj[coverType].storUpp000005 = pcr.ifthenelse(
                self.model.landSurface.satDegUpp000005 > 0.0, \
                self.model.landSurface.landCoverObj[coverType].storUpp000005, \
                constrained_satDegUpp000005 * self.model.landSurface.parameters.storCapUpp000005)
            # correct for any scaling issues (value < 0 or > 1 do not make sense
            self.model.landSurface.landCoverObj[
                coverType].storUpp000005 = pcr.min(
                    1.0,
                    pcr.max(
                        0.0, self.model.landSurface.landCoverObj[coverType].
                        storUpp000005))

    def set_value(self, long_var_name, src):

        if self.model is None or not hasattr(self.model.landSurface,
                                             'satDegUpp000005'):
            logger.info("cannot set value for %s, as model has not run yet.",
                        long_var_name)
            return

        logger.info("setting value for %s", long_var_name)

        # logger.info("dumping state to %s", self.configuration.endStateDir)
        # self.model.dumpStateDir(self.configuration.endStateDir + "/pre/")

        # print "got value to set", src

        # make sure the raster is the right side up
        src = np.flipud(src)

        # print "flipped", src

        # cast to pcraster precision
        src = src.astype(np.float32)

        # print "as float 32", src

        sys.stdout.flush()

        logger.info("setting value shape %s", src.shape)

        if (long_var_name == "top_layer_soil_saturation"):
            self.set_satDegUpp000005(src)
        else:
            raise Exception("unknown var name" + long_var_name)

        # write state here to facilitate restarting tomorrow
        # logger.info("dumping state to %s", self.configuration.endStateDir)
        # self.model.dumpStateDir(self.configuration.endStateDir + "/post/")

    def set_value_at_indices(self, long_var_name, inds, src):
        raise NotImplementedError

    def get_grid_type(self, long_var_name):
        return BmiGridType.UNIFORM

    def get_grid_shape(self, long_var_name):
        return

    def get_grid_shape(self, long_var_name):
        return self.shape

    def get_grid_spacing(self, long_var_name):

        cellsize = pcr.clone().cellSize()

        return np.array([cellsize, cellsize])

    def get_grid_origin(self, long_var_name):

        north = pcr.clone().north()
        cellSize = pcr.clone().cellSize()
        nrRows = pcr.clone().nrRows()

        south = north - (cellSize * nrRows)

        west = pcr.clone().west()

        return np.array([south, west])

    def get_grid_x(self, long_var_name):
        raise ValueError

    def get_grid_y(self, long_var_name):
        raise ValueError

    def get_grid_z(self, long_var_name):
        raise ValueError

    def get_grid_connectivity(self, long_var_name):
        raise ValueError

    def get_grid_offset(self, long_var_name):
        raise ValueError

    #EBMI functions

    def set_start_time(self, start_time):
        self.model_time.setStartTime(self.in_modeltime(start_time))

    def set_end_time(self, end_time):
        self.model_time.setEndTime(self.in_modeltime(end_time))

    def get_attribute_names(self):
        raise NotImplementedError

    def get_attribute_value(self, attribute_name):
        raise NotImplementedError

    def set_attribute_value(self, attribute_name, attribute_value):
        raise NotImplementedError

    def save_state(self, destination_directory):
        logger.info("saving state to %s", destination_directory)
        self.model.dumpStateDir(destination_directory)

    def load_state(self, source_directory):
        raise NotImplementedError
def main():

    # get the full path of configuration/ini file given in the system argument
    iniFileName = os.path.abspath(sys.argv[1])

    # debug option
    debug_mode = False
    if len(sys.argv) > 2:
        if sys.argv[2] == "debug" or sys.argv[
                2] == "debug_parallel" or sys.argv[2] == "debug-parallel":
            debug_mode = True

    # object to handle configuration/ini file
    configuration = Configuration(iniFileName = iniFileName, \
                                  debug_mode = debug_mode, \
                                  no_modification = False)

    # parallel option
    this_run_is_part_of_a_set_of_parallel_run = False
    if len(sys.argv) > 2:
        if sys.argv[2] == "parallel" or sys.argv[
                2] == "debug_parallel" or sys.argv[2] == "debug-parallel":
            this_run_is_part_of_a_set_of_parallel_run = True

    # for a non parallel run (usually 30min), a specific directory given in the system argument (sys.argv[3]) will be assigned for a given parameter combination:
    if this_run_is_part_of_a_set_of_parallel_run == False:
        # modfiying 'outputDir' (based on the given system argument)
        configuration.globalOptions['outputDir'] += "/" + str(
            sys.argv[3]) + "/"

    # for a parallel run (usually 5min), we assign a specific directory based on the clone number/code:
    if this_run_is_part_of_a_set_of_parallel_run:
        # modfiying outputDir, clone-map and landmask (based on the given system arguments)
        clone_code = str(sys.argv[3])
        configuration.globalOptions['outputDir'] += "/" + clone_code + "/"
        configuration.globalOptions['cloneMap'] = configuration.globalOptions[
            'cloneMap'] % (clone_code)
        configuration.globalOptions['landmask'] = configuration.globalOptions[
            'landmask'] % (clone_code)

    # set configuration
    configuration.set_configuration(system_arguments=sys.argv)

    # timeStep info: year, month, day, doy, hour, etc
    currTimeStep = ModelTime()

    # object for spin_up
    spin_up = SpinUp(configuration)

    # spinning-up
    noSpinUps = int(configuration.globalOptions['maxSpinUpsInYears'])
    initial_state = None
    if noSpinUps > 0:

        logger.info('Spin-Up #Total Years: ' + str(noSpinUps))

        spinUpRun = 0
        has_converged = False
        while spinUpRun < noSpinUps and has_converged == False:
            spinUpRun += 1
            currTimeStep.getStartEndTimeStepsForSpinUp(
                configuration.globalOptions['startTime'], spinUpRun, noSpinUps)
            logger.info('Spin-Up Run No. ' + str(spinUpRun))
            deterministic_runner = DeterministicRunner(configuration,
                                                       currTimeStep,
                                                       initial_state, sys.argv)

            all_state_begin = deterministic_runner.model.getAllState()

            dynamic_framework = DynamicFramework(deterministic_runner,
                                                 currTimeStep.nrOfTimeSteps)
            dynamic_framework.setQuiet(True)
            dynamic_framework.run()

            all_state_end = deterministic_runner.model.getAllState()

            has_converged = spin_up.checkConvergence(
                all_state_begin, all_state_end, spinUpRun,
                deterministic_runner.model.routing.cellArea)

            initial_state = deterministic_runner.model.getState()
    #
    # Running the deterministic_runner (excluding DA scheme)
    currTimeStep.getStartEndTimeSteps(configuration.globalOptions['startTime'],
                                      configuration.globalOptions['endTime'])

    logger.info('Transient simulation run started.')
    deterministic_runner = DeterministicRunner(configuration, currTimeStep,
                                               initial_state, sys.argv)

    dynamic_framework = DynamicFramework(deterministic_runner,
                                         currTimeStep.nrOfTimeSteps)
    dynamic_framework.setQuiet(True)
    dynamic_framework.run()
Exemplo n.º 23
0
class pcrglobwbBMI(object):
    def initialize(self, config_file_location=None):
        """
        Initializes the model: read config file, load variables, get timestep information, etc.
        """
        self.configuration = Configuration(config_file_location)

        self.initial_state = None

        self.currTimeStep = ModelTime(
        )  # timeStep info: year, month, day, doy, hour, etc

        self.currTimeStep.getStartEndTimeSteps(
            self.configuration.globalOptions['startTime'],
            self.configuration.globalOptions['endTime'])

        self.deterministic_runner = DeterministicRunner(
            self.configuration, self.currTimeStep, self.initial_state)

        self.dynamic_framework = DynamicFramework(self.deterministic_runner, 1)
        self.dynamic_framework.setQuiet(True)
        self.dynamic_framework._runInitial()
        self.dynamic_framework._runResume()

        # set timestep (to allow updates on a per-timestep-basis)
        self.currenttimestep = 0

        logger.info('Model initialized. Spin-up might be required.')

    def finalize(self):
        """
        Finalizes the model: shut down the model run, clean up resources, etc.
        """
        self.dynamic_framework._runSuspend()
        #dynamic_framework._wf_shutdown()   # commented out, special function from wflow Dynamic Framework

    def spinup(self):
        """
        Spin-up the model. This is required to obtain realistic starting conditions for the model run.
        It runs on a yearly basis until the required convergence or max. allowed spin-up runs is reached.
        """
        spin_up = SpinUp(self.configuration)  # object for spin_up

        self.currTimeStep = ModelTime(
        )  # timeStep info: year, month, day, doy, hour, etc

        # spin-up
        noSpinUps = int(self.configuration.globalOptions['maxSpinUpsInYears'])
        if noSpinUps > 0:

            logger.info('Spin-Up #Total Years: ' + str(noSpinUps))

            spinUpRun = 0
            has_converged = False
            while spinUpRun < noSpinUps and has_converged == False:
                spinUpRun += 1
                self.currTimeStep.getStartEndTimeStepsForSpinUp(
                    self.configuration.globalOptions['startTime'], spinUpRun,
                    noSpinUps)
                logger.info('Spin-Up Run No. ' + str(spinUpRun))
                deterministic_runner = DeterministicRunner(
                    self.configuration, self.currTimeStep, self.initial_state)

                all_state_begin = deterministic_runner.model.getAllState()

                self.dynamic_framework = DynamicFramework(
                    deterministic_runner, self.currTimeStep.nrOfTimeSteps)
                self.dynamic_framework.setQuiet(True)
                self.dynamic_framework.run()

                all_state_end = deterministic_runner.model.getAllState()

                has_converged = spin_up.checkConvergence(
                    all_state_begin, all_state_end, spinUpRun,
                    deterministic_runner.model.routing.cellArea)

                self.initial_state = deterministic_runner.model.getState()

                # setting model ready after spin-up
                self.currTimeStep.getStartEndTimeSteps(
                    self.configuration.globalOptions['startTime'],
                    self.configuration.globalOptions['endTime'])

                self.deterministic_runner = DeterministicRunner(
                    self.configuration, self.currTimeStep, self.initial_state)

        logger.info(
            'End of spin-up. Model is ready for transient simulation run.')

    def update(self, dt=-1):
        """
        Updates the model a number of timesteps, dependent on specified dt:
        dt = -1	-> runs the entire model from start time to end time
        dt = 1  -> updates the model 1 timestep (1 day)
        dt > 1  -> updates the model a number of timesteps (dt days)
        
        NOTE: the model can only run on a daily timestep!
        """

        if dt == 1:
            # update timestep
            self.currenttimestep += 1
            self.currTimeStep.update(self.currenttimestep)

            # commented out, already stated at initialization and at end of spin-up, not required at every timestep?
            #deterministic_runner = DeterministicRunner(self.configuration, self.currTimeStep, self.initial_state)

            # update model
            self.dynamic_framework = DynamicFramework(
                self.deterministic_runner, self.currenttimestep,
                self.currenttimestep)
            self.dynamic_framework.setQuiet(True)
            self.dynamic_framework.run()

            # update states (commented out, not required?)
            #self.initial_state = deterministic_runner.model.getState()

        elif dt == -1:
            # commented out, already stated at initialization and at end of spin-up, not required here as well?
            #deterministic_runner = DeterministicRunner(self.configuration, self.currTimeStep, self.initial_state)

            self.dynamic_framework = DynamicFramework(
                self.deterministic_runner, self.currTimeStep.nrOfTimeSteps)
            self.dynamic_framework.setQuiet(True)
            self.dynamic_framework.run()

        else:
            # update timestep
            self.currenttimestep += 1
            self.currTimeStep.update(self.currenttimestep)

            # update model
            self.dynamic_framework = DynamicFramework(
                self.deterministic_runner, self.currenttimestep + (dt - 1),
                self.currenttimestep)
            self.dynamic_framework.setQuiet(True)
            self.dynamic_framework.run()

            # update time
            self.currenttimestep += (dt - 1)
            self.currTimeStep.update(self.currenttimestep)

    def get_start_time(self):
        """
        Returns model start time
        Input:  -
        Output: time as datetime (YYYY,MM,DD)
        """
        return self.currTimeStep.startTime

    def get_end_time(self):
        """
        Returns model end time
        Input:  -
        Output: time as datetime (YYYY,MM,DD)
        """
        return self.currTimeStep.endTime

    def get_current_time(self):
        """
        Returns current model time
        Input:  -
        Output: time as datetime (YYYY,MM,DD)
        """
        return self.currTimeStep.currTime

    def get_time_step(self):
        """
        Return current model timestep
        Input:  -
        Output: timestep as int
        """
        return self.currTimeStep.timeStepPCR

    def get_var(self, name, missingValues=-999):
        """
        Returns a numpy array from model library
        Input:  variable/map name (string)
        Output: numpy array or single variable, depending on input
        
        NOTE1: to get a variable from a specific landCover type, a tuple containing two strings should be used, with:
        - string 1 = name of landCover type
        - string 2 = name of variable
        
        NOTE2: there are two options to create a numpy array:
        - pcr2numpy    -> requires a value for MV (optional, default = -999)
        - pcr_as_numpy -> automatically sets nan for all MV
        Currently using pcr2numpy!
        """

        # check size of name input
        if numpy.size(name) == 1:

            # check for 'name' in the different sections of the model
            if hasattr(self.deterministic_runner.model.landSurface, name):
                pcrmap = getattr(self.deterministic_runner.model.landSurface,
                                 name)
            elif hasattr(self.deterministic_runner.model.routing, name):
                pcrmap = getattr(self.deterministic_runner.model.routing, name)
            elif hasattr(self.deterministic_runner.model.meteo, name):
                pcrmap = getattr(self.deterministic_runner.model.meteo, name)
            elif hasattr(self.deterministic_runner.model.groundwater, name):
                pcrmap = getattr(self.deterministic_runner.model.groundwater,
                                 name)
            else:
                logger.warn(
                    name +
                    " cannot be found in the model, returning empty list!")

        else:

            # first check if a specific model section was used as input
            if name[0] == 'landSurface':
                if hasattr(self.deterministic_runner.model.landSurface,
                           name[1]):
                    pcrmap = getattr(
                        self.deterministic_runner.model.landSurface, name[1])
            elif name[0] == 'routing':
                if hasattr(self.deterministic_runner.model.routing, name[1]):
                    pcrmap = getattr(self.deterministic_runner.model.routing,
                                     name[1])
            elif name[0] == 'WaterBodies':
                if hasattr(self.deterministic_runner.model.routing.WaterBodies,
                           name[1]):
                    pcrmap = getattr(
                        self.deterministic_runner.model.routing.WaterBodies,
                        name[1])
            elif name[0] == 'pcrglobwb':
                if hasattr(self.deterministic_runner.model, name[1]):
                    pcrmap = getattr(self.deterministic_runner.model, name[1])
            # otherwise check if it is a variable from a landCover type
            else:
                # use the first entry of 'name' to find correct landCover type, second entry to find variable
                try:
                    if hasattr(
                            self.deterministic_runner.model.landSurface.
                            landCoverObj[name[0]], name[1]):
                        pcrmap = getattr(
                            self.deterministic_runner.model.landSurface.
                            landCoverObj[name[0]], name[1])
                    else:
                        logger.warn(
                            '(' + name[0] + ', ' + name[1] +
                            ") cannot be found in the model, returning empty list!"
                        )
                except:
                    logger.warn(
                        '(' + name[0] + ', ' + name[1] +
                        ") cannot be found in the model, returning empty list!"
                    )

        # attempt to create a numpy array, otherwise try to give the single value, or return empty list if this is both not possible
        try:
            return_value = pcr2numpy(pcrmap, missingValues)
            #return_value = pcr_as_numpy(pcrmap)
        except:
            try:
                return_value = pcrmap
            except:
                return []

        return return_value

    def set_var(self, name, var, missingValues=-999):
        """
        Sets a pcr map with values from a numpy array.
        Input:  variable/map name (string), values (numpy array or single value), missing values (optional, default = -999)
        Output: -
        
        NOTE: to set a variable from a specific landCover type, a tuple containing two strings should be used, with:
        - string 1 = name of landCover type
        - string 2 = name of variable
        """

        # try to create a pcr map from numpy array, otherwise just use the single value
        try:
            pcrmap = numpy2pcr(Scalar, var, missingValues)
        except:
            pcrmap = var

        # check if LDD (requires additional step)
        if 'lddMap' in name:
            pcrmap = ldd(pcrmap)

        # check size of name input
        if numpy.size(name) == 1:

            # update pcr map used in model with set values
            if hasattr(self.deterministic_runner.model.groundwater, name):
                exec "self.deterministic_runner.model.groundwater." + name + " = pcrmap"
            elif hasattr(self.deterministic_runner.model.landSurface, name):
                exec "self.deterministic_runner.model.landSurface." + name + " = pcrmap"
            elif hasattr(self.deterministic_runner.model.meteo, name):
                exec "self.deterministic_runner.model.meteo." + name + " = pcrmap"
            elif hasattr(self.deterministic_runner.model.routing, name):
                exec "self.deterministic_runner.model.routing." + name + " = pcrmap"
            else:
                logger.warn(name +
                            " is not defined in the model, doing nothing!")

        else:

            # first check if a specific model section was used as input
            if name[0] == 'landSurface':
                if hasattr(self.deterministic_runner.model.landSurface,
                           name[1]):
                    exec "self.deterministic_runner.model.landSurface." + name[
                        1] + " = pcrmap"
            elif name[0] == 'routing':
                if hasattr(self.deterministic_runner.model.routing, name[1]):
                    exec "self.deterministic_runner.model.routing." + name[
                        1] + " = pcrmap"
            elif name[0] == 'WaterBodies':
                if hasattr(self.deterministic_runner.model.routing.WaterBodies,
                           name[1]):
                    exec "self.deterministic_runner.model.routing.WaterBodies." + name[
                        1] + " = pcrmap"
            elif name[0] == 'pcrglobwb':
                if hasattr(self.deterministic_runner.model, name[1]):
                    exec "self.deterministic_runner.model." + name[
                        1] + " = pcrmap"
            # otherwise check if it is a variable from a landCover type
            else:
                try:
                    if hasattr(
                            self.deterministic_runner.model.landSurface.
                            landCoverObj[name[0]], name[1]):
                        exec "self.deterministic_runner.model.landSurface.landCoverObj['" + name[
                            0] + "']." + name[1] + " = pcrmap"
                    else:
                        logger.warn(
                            '(' + name[0] + ', ' + name[1] +
                            + ") is not defined in the model, doing nothing!")
                except:
                    logger.warn(
                        '(' + name[0] + ', ' + name[1] +
                        + ") is not defined in the model, doing nothing!")