Exemplo n.º 1
0
from pylab import *
import current as pc

rc("figure", figsize=[8., 4.])
rc("figure.subplot", left=.08, top=.93, right=.98)
seed(1000)

dist = pc.Iid(pc.Normal(), 2)
nodes, weights = pc.quadgen(1, dist, rule="G")
print nodes
#  [[-1. -1.  1.  1.]
#   [-1.  1. -1.  1.]]
print weights
#  [ 0.25  0.25  0.25  0.25]
#end

dist = pc.Iid(pc.Uniform(), 2)
nodes1, weights1 = pc.quadgen([3, 5], dist, rule="C", sparse=True)
print len(weights1)
#  105

nodes2, weights2 = pc.quadgen([3, 5], dist, rule="C", growth=True)
print len(weights2)
#  297
#end

subplot(122)
scatter(nodes2[0],
        nodes2[1],
        marker="s",
        s=50 * sqrt(weights2),
Exemplo n.º 2
0
#end

dist = pc.Gamma(2)
print pc.orth_bert(2, dist)
#  [1.0, q0-2.0, q0^2-6.0q0+6.0]
#end

dist = pc.Uniform(-1, 1)
print dist.ttr([0, 1, 2, 3])
#  [[ 0.          0.          0.          0.        ]
#   [-0.          0.33333333  0.26666667  0.25714286]]
#end

dist = pc.Lognormal(0.01)
orths = pc.orth_ttr(2, dist)
print orths
#  [1.0, q0-1.00501252086, q0^2-2.04042818514q0+0.842739860094]
#end

dist = pc.Iid(pc.Gamma(1), 2)
orths = pc.orth_ttr(2, dist)
print orths
#  [1.0, q1-1.0, q0-1.0, q1^2-4.0q1+2.0, q0q1-q1-q0+1.0, q0^2-4.0q0+2.0]
#end

q = pc.variable()
dist = pc.Normal()
print pc.E(q, dist)
#  0.0
#end
Exemplo n.º 3
0
plot(z, q05, "k:")
plot(z, q95, "k:")

xlabel(r"Spacial location \verb;x;")
ylabel(r"Flow velocity")
axis([0, 1, 0, 1])
legend(loc="upper left")

savefig("intro3.pdf")
clf()

mu = [0.001, 0.01, 0.1]
Sigma = [[1, .5, .5], [.5, 1, .5], [.5, .5, 1]]
#end

N = pc.Iid(pc.Normal(0, 1), 3)
L = linalg.cholesky(Sigma)
Q = e**(N0 * L + mu)
#end

orth_poly = pc.orth_ttr(2, N)
#end

approx = pc.pcm(model_wrapper, 2, Q, proxy_dist=N)
fail

print len(w)
#  9

print approx
#  [0.0, -0.014499323957q1-0.014499323957q0+0.240519453193,
Exemplo n.º 4
0
from pylab import *
import current as pc

rc("figure", figsize=[8., 4.])
rc("figure.subplot", left=.08, top=.95, right=.98)
seed(1000)

dist = pc.Iid(pc.Uniform(), 5)


def model_solver(q):
    return q[0] * e**-q[1] / (q[2] + 1) + sin(q[3])


model_solver = pc.lazy_eval(model_solver)
#end

current = array([1, 1, 1, 1, 1])
current_error = inf
#end

for step in range(10):

    for direction in eye(len(dist), dtype=int):
        #end

        orth = pc.orth_ttr(current + direction, dist)
        nodes, weights = pc.quadgen(current + direction,
                                    dist,
                                    rule="C",
                                    growth=True)
Exemplo n.º 5
0
from numpy import *
import current as pc

function = lambda q: q[0] * e**q[1] + 1
dist = pc.Iid(pc.Normal(), 2)

approx = pc.pcm(function, 2, dist, rule="G")

print pc.around(approx, 14)
#  1.64234906518q0q1+1.64796896005q0+1.0
print pc.E(approx, dist)
#  1.0
print pc.Var(approx, dist)
#  5.41311214518
#end
Exemplo n.º 6
0
from pylab import *
import current as pc

rc("figure", figsize=[8.,4.])
rc("figure.subplot", left=.08, top=.95, right=.95, bottom=.12)
pc.seed(1000)

Q = pc.Iid(pc.Uniform(0,4), 2)
C = pc.Frank(Q, 1.5)
#end

subplot(121)
R = C.sample(1000)
scatter(R[0], R[1], marker="s", color="k", alpha=.7)
xlabel(r"$Q_0$")
ylabel(r"$Q_1$")
xticks(range(5))
yticks(range(5))
axis([0,4,0,4])
title("Scatter")

subplot(122)
s,t = meshgrid(linspace(0,4,100), linspace(0,4,100))
contourf(s,t,C.pdf([s,t]), 30)
xlabel(r"$q_0$")
ylabel(r"$q_1$")
xticks(range(5))
yticks(range(5))
title("Probability Density")

subplots_adjust(bottom=0.12, right=0.85, top=0.9)
Exemplo n.º 7
0
from pylab import *
import current as pc

dist_main = pc.MvNormal([0, 0], [[1, .5], [.5, 1]])
#end

dist_aux = pc.Iid(pc.Normal(), 2)
#end

orth, norms = pc.orth_ttr(2, dist_aux, retall=True)
print orth
#  [1.0, q1, q0, q1^2-1.0, q0q1, q0^2-1.0]
#end

nodes_aux, weights = pc.quadgen(3, dist_aux, rule="G")
#end

function = lambda q: q[0] * e**-q[1] + 1
#end

nodes_main = dist_main.inv(dist_aux.fwd(nodes_aux))
solves = [function(q) for q in nodes_main.T]
#end

approx = pc.fitter_quad(orth, nodes_aux, weights, solves, norms=norms)
print pc.E(approx, dist_aux)
#  0.175824752014
#end