Exemplo n.º 1
0
def recover_x_coordinate(y: nat, sign: bool) -> felem_t:
    if y >= p25519:
        return None
    else:
        y = felem(y)
        p1 = fmul(d25519, fsqr(y))
        p1_1 = fadd(p1, 1)
        x2 = fmul(fsub(fsqr(y), 1), finv(p1_1))
        if x2 == 0 and sign:
            return None
        elif x2 == 0 and not sign:
            return felem(0)
        else:
            x = pow(x2, (p25519 + 3) // 8, p25519)
            if (fsub(fsqr(x), x2) != 0):
                x = fmul(x, fsqrt_m1)
            if (fsub(fsqr(x), x2) != 0):
                return None
            else:
                if (x % 2 == 1) != sign:
                    return felem(p25519 - x)
                else:
                    return x
Exemplo n.º 2
0
def point_double(p: extended_point_t) -> extended_point_t:
    if p == (0, 1, 1, 0):
        return p
    (x1, y1, z1, t1) = p
    a = fmul(x1, x1)
    b = fmul(y1, y1)
    c = fmul(felem(2), fmul(z1, z1))
    h = fadd(a, b)
    e = fsub(h, fmul(fadd(x1, y1), fadd(x1, y1)))
    g = fsub(a, b)
    f = fadd(c, g)
    x3 = fmul(e, f)
    y3 = fmul(g, h)
    t3 = fmul(e, h)
    z3 = fmul(f, g)
    return (x3, y3, z3, t3)
Exemplo n.º 3
0
def point_add(p: extended_point_t, q: extended_point_t) -> extended_point_t:
    if p == (0, 1, 1, 0):
        return q
    if q == (0, 1, 1, 0):
        return p
    (x1, y1, z1, t1) = p
    (x2, y2, z2, t2) = q
    a = fmul(fsub(y1, x1), fsub(y2, x2))
    b = fmul(fadd(y1, x1), fadd(y2, x2))
    c = fmul(felem(2), fmul(fmul(d25519, t1), t2))
    d = fmul(2, fmul(z1, z2))
    e = fsub(b, a)
    f = fsub(d, c)
    g = fadd(d, c)
    h = fadd(b, a)
    x3 = fmul(e, f)
    y3 = fmul(g, h)
    t3 = fmul(e, h)
    z3 = fmul(f, g)
    p = (x3, y3, z3, t3)
    return p
Exemplo n.º 4
0
def sha512_modq(s: vlbytes) -> felem_t:
    h = sha512(s)
    return (felem(bytes.to_nat_le(h) % q25519))
Exemplo n.º 5
0
#!/usr/bin/python3

from speclib import *
from curve25519 import felem_t, felem, fadd, fsub, fmul, fsqr, finv, serialized_scalar_t, serialized_point_t, scalar_t, p25519
from sha2 import sha512

# Define prime field
d25519: felem_t = felem(
    37095705934669439343138083508754565189542113879843219016388785533085940283555
)
q25519: felem_t = felem((1 << 252) + 27742317777372353535851937790883648493)


def sha512_modq(s: vlbytes) -> felem_t:
    h = sha512(s)
    return (felem(bytes.to_nat_le(h) % q25519))


affine_point_t = tuple2(felem_t, felem_t)
extended_point_t = tuple4(felem_t, felem_t, felem_t, felem_t)


def point_add(p: extended_point_t, q: extended_point_t) -> extended_point_t:
    if p == (0, 1, 1, 0):
        return q
    if q == (0, 1, 1, 0):
        return p
    (x1, y1, z1, t1) = p
    (x2, y2, z2, t2) = q
    a = fmul(fsub(y1, x1), fsub(y2, x2))
    b = fmul(fadd(y1, x1), fadd(y2, x2))